Solution to the Sample Test for SBL

1. When $12^{x}=18^{y}=24^{z}=2$, find $\frac{1}{x}-\frac{1}{y}+\frac{1}{z}$.
(Sol) Since $12^{x}=18^{y}=24^{z}=2$, we get $x=\frac{\log 2}{\log 12}, \quad y=\frac{\log 2}{\log 18}$ and $z=\frac{\log 2}{\log 24}$, which yields

$$
\frac{1}{x}-\frac{1}{y}+\frac{1}{z}=\frac{\log 12}{\log 2}-\frac{\log 18}{\log 2}+\frac{\log 24}{\log 2}=\frac{\log 12-\log 18+\log 24}{\log 2}
$$

Since $\log 12-\log 18+\log 24=\log \frac{12 \times 24}{18}=\log 16=4 \log 2$, it follows that $\frac{1}{x}-\frac{1}{y}+\frac{1}{z}=4$. The answer is (4).
2. Find $\sin \frac{\pi}{12}+\cos \frac{\pi}{12}$
(Sol) We note that

$$
\begin{aligned}
\left(\sin \frac{\pi}{12}+\cos \frac{\pi}{12}\right)^{2} & =\sin ^{2} \frac{\pi}{12}+\cos ^{2} \frac{\pi}{12}+2 \sin \frac{\pi}{12} \cos \frac{\pi}{12}=1+\sin \frac{\pi}{6} \\
& =1+\frac{1}{2}=\frac{3}{2}
\end{aligned}
$$

Hence, it follows that $\sin \frac{\pi}{12}+\cos \frac{\pi}{12}=\sqrt{\frac{3}{2}}$.
The answer is (3).
3. Let $A=\left(\begin{array}{cc}3 & 2 \\ -1 & -1\end{array}\right)$ and $B=\left(\begin{array}{cc}-3 & -3 \\ 4 & 5\end{array}\right)$. When $\left(A^{-1}+B\right)^{2}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, find $a+b+c+d$.
(Sol) Since $A^{-1}=-\left(\begin{array}{cc}-1 & -2 \\ 1 & 3\end{array}\right)=\left(\begin{array}{cc}1 & 2 \\ -1 & -3\end{array}\right)$, it follows that
$A^{-1}+B=\left(\begin{array}{cc}1 & 2 \\ -1 & -3\end{array}\right)+\left(\begin{array}{cc}-3 & -3 \\ 4 & 5\end{array}\right)=\left(\begin{array}{cc}-2 & -1 \\ 3 & 2\end{array}\right)$. Hence,
$\left(A^{-1}+B\right)^{2}=\left(\begin{array}{cc}-2 & -1 \\ 3 & 4\end{array}\right)^{2}=\left(\begin{array}{cc}-2 & -1 \\ 3 & 2\end{array}\right)\left(\begin{array}{cc}-2 & -1 \\ 3 & 2\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$,
which shows that $a+b+c+d=2$. The answer is (2).
4. When $\omega=\frac{\sqrt{3}+i}{\sqrt{2}+\sqrt{2} i}$, find ω^{12}.
(Sol) We note that
$\omega^{2}=\frac{2+2 \sqrt{3} i}{4 i}=\frac{1+\sqrt{3} i}{2 i}, \quad \omega^{4}=\frac{-2+2 \sqrt{3} i}{-4}=\frac{1-\sqrt{3} i}{2}$, and $\omega^{8}=\frac{-2-2 \sqrt{3} i}{4}=\frac{-1-\sqrt{3} i}{2}$. Hence, it follows that
$\omega^{12}=\omega^{4} \cdot \omega^{8}=\frac{1-\sqrt{3} i}{2} \cdot \frac{-1-\sqrt{3} i}{2}=\frac{-1-3}{4}=-1$.
The answer is (1).
5. Let M and m be the maximum and minimum values of $y=4 x^{3}-3 x^{2}-6 x+2,(-1 \leq x \leq 1)$, respectively. Find $M+m$.
(Sol) Since $y^{\prime}=12 x^{2}-6 x-6=6\left(2 x^{2}-x-1\right)=6(2 x+1)(x-1)$, it follows that $y^{\prime}=0$ at $x=-\frac{1}{2}$ and $x=1$. Since $-1 \leq x \leq 1$, simple computation shows that $y_{x=-1}=1, y_{x=-\frac{1}{2}}=\frac{15}{4}$ and $y_{x=1}=-3$. Hence, $M=\frac{15}{4}$ and $m=-3$ and $M+m=\frac{3}{4} . \quad$ The answer is (2).
6. Find $\int_{1}^{2} x\left(x^{2}-3\right)^{3} d x$.
(Sol) Setting $u=x^{2}-3$, then $x d x=\frac{1}{2} d u$. If $x=1$, then $u=-2$, and if $x=2$, then $u=1$. Hence,

$$
\int_{1}^{2} x\left(x^{2}-3\right)^{3} d x=\int_{-2}^{1} \frac{1}{2} u^{3} d u=\frac{1}{2}\left[\frac{1}{4} u^{4}\right]_{-2}^{1}=\frac{1}{8}(1-16)=-\frac{15}{8} .
$$

The answer is (5).

