Solution to the Sample Test for SBL

1. When $12^x = 18^y = 24^z = 2$, find $\frac{1}{x} - \frac{1}{y} + \frac{1}{z}$. (Sol) Since $12^x = 18^y = 24^z = 2$, we get $x = \frac{\log 2}{\log 12}$, $y = \frac{\log 2}{\log 18}$ and $z = \frac{\log 2}{\log 24}$, which yields

$$\frac{1}{x} - \frac{1}{y} + \frac{1}{z} = \frac{\log 12}{\log 2} - \frac{\log 18}{\log 2} + \frac{\log 24}{\log 2} = \frac{\log 12 - \log 18 + \log 24}{\log 2}$$

Since $\log 12 - \log 18 + \log 24 = \log \frac{12 \times 24}{18} = \log 16 = 4 \log 2$, it follows that $\frac{1}{x} - \frac{1}{y} + \frac{1}{z} = 4$. The answer is @.

2. Find
$$\sin \frac{\pi}{12} + \cos \frac{\pi}{12}$$

(Sol) We note that
 $\left(\sin \frac{\pi}{12} + \cos \frac{\pi}{12}\right)^2 = \sin^2 \frac{\pi}{12} + \cos^2 \frac{\pi}{12} + 2\sin \frac{\pi}{12} \cos \frac{\pi}{12} = 1 + \sin \frac{\pi}{6}$
 $= 1 + \frac{1}{2} = \frac{3}{2}$.

Hence, it follows that $\sin \frac{\pi}{12} + \cos \frac{\pi}{12} = \sqrt{\frac{3}{2}}$. The answer is ③.

3. Let
$$A = \begin{pmatrix} 3 & 2 \\ -1 & -1 \end{pmatrix}$$
 and $B = \begin{pmatrix} -3 & -3 \\ 4 & 5 \end{pmatrix}$. When $(A^{-1} + B)^2 = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, find $a + b + c + d$.
(Sol) Since $A^{-1} = -\begin{pmatrix} -1 & -2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -1 & -3 \end{pmatrix}$, it follows that $A^{-1} + B = \begin{pmatrix} 1 & 2 \\ -1 & -3 \end{pmatrix} + \begin{pmatrix} -3 & -3 \\ 4 & 5 \end{pmatrix} = \begin{pmatrix} -2 & -1 \\ 3 & 2 \end{pmatrix}$. Hence, $(A^{-1} + B)^2 = \begin{pmatrix} -2 & -1 \\ 3 & 4 \end{pmatrix}^2 = \begin{pmatrix} -2 & -1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} -2 & -1 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, which shows that $a + b + c + d = 2$. The answer is $@$.

4. When
$$\omega = \frac{\sqrt{3} + i}{\sqrt{2} + \sqrt{2}i}$$
, find ω^{12} .
(Sol) We note that
 $\omega^2 = \frac{2+2\sqrt{3}i}{4i} = \frac{1+\sqrt{3}i}{2i}$, $\omega^4 = \frac{-2+2\sqrt{3}i}{-4} = \frac{1-\sqrt{3}i}{2}$, and
 $\omega^8 = \frac{-2-2\sqrt{3}i}{4} = \frac{-1-\sqrt{3}i}{2}$. Hence, it follows that
 $\omega^{12} = \omega^4 \cdot \omega^8 = \frac{1-\sqrt{3}i}{2} \cdot \frac{-1-\sqrt{3}i}{2} = \frac{-1-3}{4} = -1$.
The answer is (D.

5. Let *M* and *m* be the maximum and minimum values of $y = 4x^3 - 3x^2 - 6x + 2$, $(-1 \le x \le 1)$, respectively. Find M + m. (Sol) Since $y' = 12x^2 - 6x - 6 = 6(2x^2 - x - 1) = 6(2x + 1)(x - 1)$, it follows that y' = 0 at $x = -\frac{1}{2}$ and x = 1. Since $-1 \le x \le 1$, simple computation shows that $y_{x=-1} = 1$, $y_{x=-\frac{1}{2}} = \frac{15}{4}$ and $y_{x=1} = -3$. Hence, $M = \frac{15}{4}$ and m = -3 and $M + m = \frac{3}{4}$. The answer is ②.

6. Find $\int_{1}^{2} x (x^{2} - 3)^{3} dx$. (Sol) Setting $u = x^{2} - 3$, then $x dx = \frac{1}{2} du$. If x = 1, then u = -2, and if x = 2, then u = 1. Hence, $\int_{1}^{2} x (x^{2} - 3)^{3} dx = \int_{-2}^{1} \frac{1}{2} u^{3} du = \frac{1}{2} \left[\frac{1}{4} u^{4} \right]_{-2}^{1} = \frac{1}{8} (1 - 16) = -\frac{15}{8}$.

The answer is ⑤.