Solution to the Sample Test for SOCIE

1. When $\sin \theta \cos \theta=\frac{1}{3}$ for $0<\theta<\frac{\pi}{4}$, find the value of $\sin \theta-\cos \theta$.
(1) $-\frac{\sqrt{5}}{3}$
(2) $-\frac{2}{3}$
(3) $-\frac{\sqrt{3}}{3}$
(4) $-\frac{\sqrt{2}}{3}$
(5) $-\frac{1}{3}$
(Sol) Since $(\sin \theta-\cos \theta)^{2}=1-2 \sin \theta \cos \theta=\frac{1}{3}$, it follows that $\sin \theta-\cos \theta= \pm \frac{\sqrt{3}}{3}$.
Since $0<\theta<\frac{\pi}{4}$, we have $\sin \theta-\cos \theta<0$. Hence, $\sin \theta-\cos \theta=-\frac{\sqrt{3}}{3}$.
The answer is (3).
2. Compute $\log _{10} \frac{2}{1}+\log _{10} \frac{3}{2}+\log _{10} \frac{4}{3}+\cdots+\log _{10} \frac{25}{24}$.
(1) $\log _{10} 25$
(2) $\log _{10} 35$
(3) $\log _{10} 45$
(4) $\log _{10} 55$
(5) $\log _{10} 65$
(Sol) $\log _{10} \frac{2}{1}+\log _{10} \frac{3}{2}+\log _{10} \frac{4}{3}+\cdots+\log _{10} \frac{25}{24}=\log _{10}\left(\frac{2}{1} \frac{3}{2} \frac{4}{3} \cdots \frac{25}{24}\right)=\log _{10} 25$.
The answer is (1).
3. For $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$, we write $A B A^{-1}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Find $a+b+c+d$.
(1) 2
(2) 4
(3) 6
(4) 8
(5) 10
(Sol) For $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right), \quad A^{-1}=\left(\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right)$. Thus $A B A^{-1}=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right)=\left(\begin{array}{ll}-3 & 8 \\ -2 & 5\end{array}\right)$, and $a+b+c+d=8$.

The answer is (4).
4. Evaluate $\lim _{\theta \rightarrow 0} \frac{1-\cos 2 \theta}{(\operatorname{tg}(3 \theta))^{2}}$, where $\operatorname{tg} A=\frac{\sin A}{\cos A}$.
(1) $\frac{1}{9}$
(2) $\frac{2}{9}$
(3) $\frac{1}{3}$
(4) $\frac{4}{9}$
(5) $\frac{5}{9}$
(Sol) We note that
$\frac{1-\cos 2 \theta}{(t g(3 \theta))^{2}}=(1-\cos 2 \theta) \cdot \frac{\cos ^{2} 3 \theta}{\sin ^{2} 3 \theta}=\frac{(1-\cos 2 \theta)(1+\cos 2 \theta)}{(1+\cos 2 \theta)} \frac{\cos ^{2} 3 \theta}{\sin ^{2} 3 \theta}=\frac{1-\cos ^{2} 2 \theta}{(1+\cos 2 \theta)} \frac{\cos ^{2} 3 \theta}{\sin ^{2} 3 \theta}$

$$
=\frac{\sin ^{2} 2 \theta \cos ^{2} 3 \theta}{(1+\cos 2 \theta) \sin ^{2} 3 \theta}=\frac{(\sin 2 \theta)^{2}}{(2 \theta)^{2}} \cdot \frac{4}{9} \cdot \frac{(3 \theta)^{2}}{(\sin 3 \theta)^{2}} \cdot \frac{\cos ^{2} 3 \theta}{1+\cos 2 \theta},
$$

which yields $\lim _{\theta \rightarrow 0} \frac{1-\cos 2 \theta}{\tan ^{2} 3 \theta}=\lim _{\theta \rightarrow 0} \frac{(\sin 2 \theta)^{2}}{(2 \theta)^{2}} \frac{4}{9} \frac{(3 \theta)^{2}}{(\sin 3 \theta)^{2}} \frac{\cos ^{2} 3 \theta}{1+\cos 2 \theta}=1 \cdot \frac{4}{9} \cdot 1 \cdot \frac{1}{2}=\frac{2}{9}$.
The answer is (2).
5. Find the minimum value of $f(x)=3 x^{4}-2 x^{3}+6 x^{2}-6 x+2$.
(1) $\frac{1}{16}$
(2) $\frac{3}{16}$
(3) $\frac{5}{16}$
(4) $\frac{7}{16}$
(5) $\frac{9}{16}$
(Sol) Since $f^{\prime}(x)=12 x^{3}-6 x^{2}+12 x-6=6(2 x-1)\left(x^{2}+1\right)$, the minimum value is $f\left(\frac{1}{2}\right)=\frac{7}{16}$.

The answer is (4).
6. Find the area of the region enclosed by $y=x^{4}-3 x^{3}+x^{2}-1$ and $y=x^{4}-3 x^{3}+x+1$.
(1) $\frac{1}{2}$
(2) $\frac{3}{2}$
(3) $\frac{5}{2}$
(4) $\frac{7}{2}$
(5) $\frac{9}{2}$
(Sol) Since $\left(x^{4}-3 x^{3}+x+1\right)-\left(x^{4}-3 x^{3}+x^{2}-1\right)=-\left(x^{2}-x-2\right)=-(x+1)(x-2)$, two graphs meet at $x=-1$ and $x=2$. Since $x^{4}-3 x^{3}+x+1 \geq x^{4}-3 x^{3}+x^{2}-1$ on the interval $[-1,2]$, the area is given by

$$
\begin{gathered}
\int_{-1}^{2}\left(\left(x^{4}-3 x^{3}+x+1\right)-\left(x^{4}-3 x^{3}+x^{2}-1\right)\right) d x=\int_{-1}^{2}-\left(x^{2}-x-2\right) d x \\
=\left[-\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+2 x\right]_{-1}^{2}=\left(-\frac{8}{3}+2+4\right)-\left(\frac{1}{3}+\frac{1}{2}-2\right)=\frac{9}{2}
\end{gathered}
$$

The answer is (5).

