Solution to the Sample Test for SOCIE

1. When $\sin\theta\cos\theta = \frac{1}{3}$ for $0 < \theta < \frac{\pi}{4}$, find the value of $\sin\theta - \cos\theta$. $(1) \quad -\frac{\sqrt{5}}{3} \qquad (2) \quad -\frac{2}{3} \qquad (3) \quad -\frac{\sqrt{3}}{3} \qquad (4) \quad -\frac{\sqrt{2}}{3} \qquad (5) \quad -\frac{1}{3}$

(Sol) Since $(\sin\theta - \cos\theta)^2 = 1 - 2\sin\theta\cos\theta = \frac{1}{3}$, it follows that $\sin\theta - \cos\theta = \pm \frac{\sqrt{3}}{3}$. Since $0 < \theta < \frac{\pi}{4}$, we have $\sin \theta - \cos \theta < 0$. Hence, $\sin \theta - \cos \theta = -\frac{\sqrt{3}}{3}$. The answer is 3.

2. Compute $\log_{10}\frac{2}{1} + \log_{10}\frac{3}{2} + \log_{10}\frac{4}{3} + \cdots + \log_{10}\frac{25}{24}$. $2 \log_{10} 35$ $3 \log_{10} 45$ $4 \log_{10} 55$ $(5) \log_{10}65$ (1) $\log_{10}25$

(Sol) $\log_{10}\frac{2}{1} + \log_{10}\frac{3}{2} + \log_{10}\frac{4}{3} + \dots + \log_{10}\frac{25}{24} = \log_{10}\left(\frac{2}{1}\frac{3}{2}\frac{4}{3}\frac{4}{3}\frac{25}{24}\right) = \log_{10}25.$ The answer is ①.

3. For $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, we write $ABA^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Find a + b + c + d. ① 2 ② 4 ③ 6 ④ 8 ⑤ 10

(Sol) For $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, $A^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$. Thus $ABA^{-1} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -3 & 8 \\ -2 & 5 \end{pmatrix}$, and a+b+c+d=8.

The answer is ④.

4. Evaluate
$$\lim_{\theta \to 0} \frac{1 - \cos 2\theta}{(tg (3\theta))^2}$$
, where $tgA = \frac{\sin A}{\cos A}$.
(D) $\frac{1}{9}$ (2) $\frac{2}{9}$ (3) $\frac{1}{3}$ (4) $\frac{4}{9}$ (5) $\frac{5}{9}$

(Sol) We note that

$$\frac{1-\cos 2\theta}{(tg(3\theta))^2} = (1-\cos 2\theta) \cdot \frac{\cos^2 3\theta}{\sin^2 3\theta} = \frac{(1-\cos 2\theta)(1+\cos 2\theta)}{(1+\cos 2\theta)} \frac{\cos^2 3\theta}{\sin^2 3\theta} = \frac{1-\cos^2 2\theta}{(1+\cos 2\theta)} \frac{\cos^2 3\theta}{\sin^2 3\theta}$$

$$= \frac{\sin^2 2\theta \cos^2 3\theta}{(1+\cos 2\theta)\sin^2 3\theta} = \frac{(\sin 2\theta)^2}{(2\theta)^2} \cdot \frac{4}{9} \cdot \frac{(3\theta)^2}{(\sin 3\theta)^2} \cdot \frac{\cos^2 3\theta}{1+\cos 2\theta} ,$$

which yields
$$\lim_{\theta \to 0} \frac{1-\cos 2\theta}{\tan^2 3\theta} = \lim_{\theta \to 0} \frac{(\sin 2\theta)^2}{(2\theta)^2} \frac{4}{9} \frac{(3\theta)^2}{(\sin 3\theta)^2} \frac{\cos^2 3\theta}{1+\cos 2\theta} = 1 \cdot \frac{4}{9} \cdot 1 \cdot \frac{1}{2} = \frac{2}{9} \cdot 1$$

The answer is $@$.

5. Find the minimum value of $f(x) = 3x^4 - 2x^3 + 6x^2 - 6x + 2$. (1) $\frac{1}{16}$ (2) $\frac{3}{16}$ (3) $\frac{5}{16}$ (4) $\frac{7}{16}$ (5) $\frac{9}{16}$

(Sol) Since $f'(x) = 12x^3 - 6x^2 + 12x - 6 = 6(2x - 1)(x^2 + 1)$, the minimum value is $f\left(\frac{1}{2}\right) = \frac{7}{16}$.

The answer is 4.

6. Find the area of the region enclosed by $y = x^4 - 3x^3 + x^2 - 1$ and $y = x^4 - 3x^3 + x + 1$. (1) $\frac{1}{2}$ (2) $\frac{3}{2}$ (3) $\frac{5}{2}$ (4) $\frac{7}{2}$ (5) $\frac{9}{2}$

(Sol) Since $(x^4 - 3x^3 + x + 1) - (x^4 - 3x^3 + x^2 - 1) = -(x^2 - x - 2) = -(x + 1)(x - 2)$, two graphs meet at x = -1 and x = 2. Since $x^4 - 3x^3 + x + 1 \ge x^4 - 3x^3 + x^2 - 1$ on the interval [-1, 2], the area is given by

$$\int_{-1}^{2} \left(\left(x^{4} - 3x^{3} + x + 1 \right) - \left(x^{4} - 3x^{3} + x^{2} - 1 \right) \right) dx = \int_{-1}^{2} \left(\left(x^{2} - x - 2 \right) dx \right) dx$$
$$= \left[\left(-\frac{1}{3}x^{3} + \frac{1}{2}x^{2} + 2x \right]_{-1}^{2} = \left(-\frac{8}{3} + 2 + 4 \right) - \left(\frac{1}{3} + \frac{1}{2} - 2 \right) = \frac{9}{2} \quad .$$

The answer is (5).