Solution to the Sample Test for SOCIE (Scholarship)

1. When $\sin \theta \cos \theta=\frac{1}{3}$, find the value of $\cos 4 \theta$.
(1) $\frac{1}{9}$
(2) $\frac{2}{9}$
(3) $\frac{1}{3}$
(4) $\frac{4}{9}$
(5) $\frac{5}{9}$
(Sol) Since $\sin 2 \theta=2 \sin \theta \cos \theta=\frac{2}{3}$, it follows that $\cos 4 \theta=1-2 \sin ^{2} 2 \theta=\frac{1}{9}$.
The answer is (1).
2. Compute $\sum_{n=1}^{99} \log _{10}\left(1-\frac{1}{n+1}\right)$.
(1) -4
(2) -2
(3) 0
(4) 2
(5) 4
(Sol) $\sum_{n=1}^{99} \log _{10}\left(1-\frac{1}{n+1}\right)=\sum_{n=1}^{99} \log _{10}\left(\frac{n}{n+1}\right)=\log _{10}\left(\frac{1}{2} \cdot \frac{2}{3} \cdots \cdots \cdot \frac{99}{100}\right)=\log _{10} \frac{1}{100}=-2$.
The answer is (2).
3. When $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ and $\left(A^{2022}\right)^{-1}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, find $a+b+c+d$.
(1) -4048
(2) -4046
(3) -4044
(4) -4042
(5) -4040
(Sol) For $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right), A^{-1}=\left(\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right)$. Simple computation show that $A^{2}=\left(\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right)$ and $A^{n}=\left(\begin{array}{ll}1 & 2 n \\ 0 & 1\end{array}\right)$. In particular, $A^{2022}=\left(\begin{array}{cc}1 & 4044 \\ 0 & 1\end{array}\right)$, and hence $\left(A^{2022}\right)^{-1}=\left(\begin{array}{cc}1 & -4044 \\ 0 & 1\end{array}\right)$, which shows $a+b+c+d=-4042$.
The answer is (4).
4. ω
ω
$x^{2}-x+1=0$
$S=\sum_{n=1}^{101} \omega^{n}$
(1) $-i$
(2) -1
(3) 0
(4) 1
(5) i
$\omega^{2}-\omega+1=0$
$\omega^{3}=\omega^{2}-\omega=-1$
$\omega^{102}=\left(\omega^{3}\right)^{34}=(-1)^{34}=1$
$S=\frac{\omega-\omega^{102}}{1-\omega}=\frac{\omega-1}{1-\omega}=-1$

The answer is (2).
5. Find the shortest distance between the curve $y=\sqrt{x},(x \geq 0)$ and the point $(1,0)$.
(1) $\frac{1}{2}$
(2) $\frac{\sqrt{2}}{2}$
(3) $\frac{\sqrt{3}}{2}$
(4) 1
(5) $\frac{3}{2}$
(Sol) Since any point on the curve $y=\sqrt{x}$ is expressed by (x, \sqrt{x}), the distance $\ell(x)$ from (x, \sqrt{x}) to $(1,0)$ is given by
$\ell(x)=\sqrt{(x-1)^{2}+(\sqrt{x}-0)^{2}}=\sqrt{x^{2}-x+1}$. Since $\ell^{\prime}(x)=\frac{2 x-1}{2 \sqrt{x^{2}-x+1}}, \ell(x)$ has the minimum value $\frac{\sqrt{3}}{2}$ at $x=\frac{1}{2}$.

The answer is (3).
6. Find the volume of the solid obtained by rotating the region enclosed by $y=-x^{2}+4$ and $y=x+2$ about the x-axis.
(1) $\frac{62}{5} \pi$
(2) $\frac{74}{5} \pi$
(3) $\frac{86}{5} \pi$
(4) $\frac{98}{5} \pi$
(5) $\frac{108}{5} \pi$
(Sol) From $-x^{2}+4=x+2$, it follows that $x^{2}+x-2=(x+2)(x-1)=0$, which shows that two graphs meet at $x=-2$ and $x=1$. Since $x+2 \leq-x^{2}+4$ on the interval $[-2,1]$, the volume V is given by

$$
\begin{aligned}
V & =\pi \int_{-2}^{1}\left(\left(-x^{2}+4\right)^{2}-(x+2)^{2}\right) d x=\pi \int_{-2}^{1}\left(x^{4}-9 x^{2}-4 x+12\right) d x \\
& =\pi\left[\frac{1}{5} x^{5}-3 x^{3}-2 x^{2}+12 x\right]_{-2}^{1}=\pi\left(\left(\frac{1}{5}-3-2+12\right)-\left(\frac{-32}{5}+24-8-24\right)\right) \\
& =\frac{108}{5} \pi
\end{aligned}
$$

The answer is (5).

