Solution to the Sample Test for SOCIE (Scholarship)

1. When $\sin\theta\cos\theta = \frac{1}{3}$, find the value of $\cos 4\theta$. (1) $\frac{1}{9}$ (2) $\frac{2}{9}$ (3) $\frac{1}{3}$ (4) $\frac{4}{9}$ (5) $\frac{5}{9}$

(Sol) Since $\sin 2\theta = 2\sin\theta\cos\theta = \frac{2}{3}$, it follows that $\cos 4\theta = 1 - 2\sin^2 2\theta = \frac{1}{9}$. The answer is ①.

2. Compute $\sum_{n=1}^{99} \log_{10} \left(1 - \frac{1}{n+1} \right)$. (1) -4 (2) -2 (3) 0 (4) 2 (5) 4

(Sol) $\sum_{n=1}^{99} \log_{10} \left(1 - \frac{1}{n+1} \right) = \sum_{n=1}^{99} \log_{10} \left(\frac{n}{n+1} \right) = \log_{10} \left(\frac{1}{2} \cdot \frac{2}{3} \cdot \dots \cdot \frac{99}{100} \right) = \log_{10} \frac{1}{100} = -2.$ The answer is @.

3. When $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ and $(A^{2022})^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, find a + b + c + d. (1) -4048 (2) -4046 (3) -4044 (4) -4042 (5) -4040

(Sol) For $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, $A^{-1} = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$. Simple computation show that $A^2 = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$ and $A^n = \begin{pmatrix} 1 & 2n \\ 0 & 1 \end{pmatrix}$. In particular, $A^{2022} = \begin{pmatrix} 1 & 4044 \\ 0 & 1 \end{pmatrix}$, and hence $(A^{2022})^{-1} = \begin{pmatrix} 1 & -4044 \\ 0 & 1 \end{pmatrix}$, which shows a + b + c + d = -4042.

The answer is ④.

4.
$$\omega$$
 $x^2 - x + 1 = 0$ $S = \sum_{n=1}^{101} \omega^n$
(1) $-i$ (2) -1 (3) 0 (4) 1 (5) i
 $\omega^2 - \omega + 1 = 0$ $\omega^3 = \omega^2 - \omega = -1$
 $\omega^{102} = (\omega^3)^{34} = (-1)^{34} = 1$ $S = \frac{\omega - \omega^{102}}{1 - \omega} = \frac{\omega - 1}{1 - \omega} = -1$

The answer is 2.

5. Find the shortest distance between the curve $y = \sqrt{x}$, $(x \ge 0)$ and the point (1,0).

(Sol) Since any point on the curve $y = \sqrt{x}$ is expressed by (x, \sqrt{x}) , the distance $\ell(x)$ from (x, \sqrt{x}) to (1, 0) is given by $\ell(x) = \sqrt{(x-1)^2 + (\sqrt{x}-0)^2} = \sqrt{x^2 - x + 1}$. Since $\ell'(x) = \frac{2x-1}{2\sqrt{x^2 - x + 1}}$, $\ell(x)$ has the minimum value $\frac{\sqrt{3}}{2}$ at $x = \frac{1}{2}$.

The answer is ③.

6. Find the volume of the solid obtained by rotating the region enclosed by $y = -x^2 + 4$ and y = x + 2 about the x-axis.

 $(1) \ \frac{62}{5}\pi \qquad (2) \ \frac{74}{5}\pi \qquad (3) \ \frac{86}{5}\pi \qquad (4) \ \frac{98}{5}\pi \qquad (5) \ \frac{108}{5}\pi$

(Sol) From $-x^2+4=x+2$, it follows that $x^2+x-2=(x+2)(x-1)=0$, which shows that two graphs meet at x=-2 and x=1. Since $x+2\leq -x^2+4$ on the interval [-2,1], the volume V is given by

$$\begin{split} V &= \pi \int_{-2}^{1} \left((-x^2 + 4)^2 - (x + 2)^2 \right) dx = \pi \int_{-2}^{1} \left(x^4 - 9x^2 - 4x + 12 \right) dx \\ &= \pi \left[\frac{1}{5} x^5 - 3x^3 - 2x^2 + 12x \right]_{-2}^{1} = \pi \left(\left(\frac{1}{5} - 3 - 2 + 12 \right) - \left(\frac{-32}{5} + 24 - 8 - 24 \right) \right) \\ &= \frac{108}{5} \pi \,. \end{split}$$

The answer is (5).