NAME: 2020 IUT Admission Test Answer Sheet (SOCIE Math)

1. [10 points]

Squaring the equation
$\sqrt{8-x}=4-\sqrt{x+2}$, we get
$4 \sqrt{x+2}=5+x$.
Squaring again, we get $x^{2}-6 x-7=0$.
Therefore $x=-1,7$, and the answer is 6.

Answer: 6

3. [10 points]

The given equation is
$\log _{2} \frac{x^{2}+5 x+12}{x+5}=\log _{2} 2$, which leads to
$\frac{x^{2}+5 x+12}{x+5}=2$. Solving this equation, we
get
$x^{2}+5 x+12=2(x+5)$, which is
$x^{2}+3 x+2=(x+2)(x+1)=0$. The
solutions are $x=-2,-1$. Since these two solutions satisfy the given equation,
they are genuine solutions. Hence, the sum of two solutions is -3 .

Answer: - 3

5. [20 points]

Note that $\int_{0}^{\pi}|x \cos x| d x=$
$\int_{0}^{\frac{\pi}{2}} x \cos x d x-\int_{\frac{\pi}{2}}^{\pi} x \cos x d x$
Using integration by parts, we get
$\int x \cos x d x=x \sin x-\int \sin x d x$
$=x \sin x+\cos x+C$.
Hence, $\int_{0}^{\pi}|x \cos x| d x$
$=[x \sin x+\cos x]_{0}^{\frac{\pi}{2}}-[x \sin x+\cos x]_{\frac{\pi}{2}}^{\pi}$
$=\left(\frac{\pi}{2}-1\right)-\left(-1-\frac{\pi}{2}\right)=\pi$

Answer: $\quad \pi$

2. [10 points]

Multiply $(n-3)^{2}$ to both sides and then we get
$(n-2)(n-3)(n-5) \leq 0$.
Thus $n \leq 2, \quad 3<n \leq 5$ since $n \neq 3$.
we have $n=1,2,4,5$
and $1+2+4+5=12$.

Answer: 12

4. [20 points]

From $\lim _{x \rightarrow \pi} \frac{f(x)}{x-\pi}=3$, we have $f(\pi)=0$ and $f^{\prime}(\pi)=3$. We note that
$\lim _{x \rightarrow \pi} \frac{\sin (2 f(x))}{x-\pi}$
$=\lim _{x \rightarrow \pi} \frac{\sin (2 f(x))}{2 f(x)} \times \frac{2(f(x)-f(\pi))}{x-\pi}$
$=1 \times 2 f^{\prime}(\pi)=2 \times 3=6$.

Answer: 6

6. [30 points]

Putting $\int_{0}^{\pi} t f^{\prime}(t)=C$, then $f(x)=\cos \frac{x}{2}+C$.
Hence, $f^{\prime}(x)=-\frac{1}{2} \sin \frac{x}{2}$ and

$$
\begin{aligned}
C= & \int_{0}^{\pi} t f^{\prime}(t) d t=\int_{0}^{\pi} t\left(-\frac{1}{2} \sin \frac{t}{2}\right) d t \\
& =\left[t \cos \frac{t}{2}\right]_{0}^{\pi}-\int_{0}^{\pi} \cos \frac{t}{2} d t \\
& =-\left[2 \sin \frac{t}{2}\right]_{0}^{\pi}=-2 .
\end{aligned}
$$

Hence,
$f\left(\frac{\pi}{2}\right)=\cos \frac{\pi}{4}+C=\cos \frac{\pi}{4}-2=\frac{\sqrt{2}-4}{2}$

Answer: $\frac{\sqrt{2-4}}{2}$

