NAME: 2020 IUT Admission Test Answer Sheet (SOL Math)

1. [10 points]

One may use the given recursive formula to obtain
$a_{2}=\frac{1}{a_{1}+1}=\frac{1}{2}, a_{3}=\frac{1}{a_{2}+1}=\frac{2}{3}$,
$a_{4}=\frac{1}{a_{3}+1}=\frac{3}{5}$ and $a_{5}=\frac{1}{a_{4}+1}=\frac{5}{8}$
successively.
Answer: $\frac{5}{8}$

3. [10 points]

Graphs of the two curves of of $y=5 \cos x$ and $y=-x$ are drawn as follows.

The two curves meets at 3 points.
Answer: 3

5. [20 points]

The line ℓ should be of the form $y=m(x-2)$. Moreover, $2 x^{2}-3 x=m(x-2)$ has a multiple root. Therefore, the determinant D of the equation $2 x^{2}-(3+m) x+2 m=0$ should be zero. Thus, $D=m^{2}-10 m+9=0$. Therefore $m=1$ or 9 . So, the least slope is 1 .
2. [10 points]
$\left(a+\frac{3}{a}\right)\left(3 a+\frac{1}{a}\right)=3 a^{2}+\frac{3}{a^{2}}+10$
$=3\left(a^{2}+\frac{1}{a^{2}}\right)+10 \geq 6 \sqrt{a^{2} \cdot \frac{1}{a^{2}}}+10=16$.
Therefore the minimum value of $\left(a+\frac{3}{a}\right)\left(3 a+\frac{1}{a}\right)$ is 16 .

Answer: 16

4. [20 points]

Since $\omega^{2}=\omega+1$, we have
$\omega^{5}-5 \omega=(\omega+1)^{2} \omega-5 \omega$
$=\omega^{3}+2 \omega^{2}+\omega-5 \omega$
$=(\omega+1) \omega+2(\omega+1)+\omega-5 \omega$
$=\omega^{2}-\omega+2=(\omega+1)-\omega+2=3$

Answer: 3

6. [30 points]
$\lim _{n \rightarrow \infty} \ln \left(\frac{3^{\frac{1}{n}}+4^{\frac{1}{n}}}{2}\right)^{n}=\lim _{n \rightarrow \infty} \frac{\ln \left(3^{\frac{1}{n}}+4^{\frac{1}{n}}\right)-\ln 2}{\frac{1}{n}}$
$=\lim _{x \rightarrow 0} \frac{\ln \left(3^{x}+4^{x}\right)-\ln 2}{x}=\left.\frac{d}{d x} \ln \left(3^{x}+4^{x}\right)\right|_{x=0}$
$=\ln \sqrt{12}$
Thus $\lim _{n \rightarrow \infty}\left(\frac{3^{\frac{1}{n}}+4^{\frac{1}{n}}}{2}\right)^{n}=\sqrt{12}$.
Therefore, the largest integer which is not exceeding $\sqrt{12}$ is 3 .

Answer: 1

