NAME:

2020 IUT Admission Test Answer Sheet (SOL Math)

1. [10 points]

One may use the given recursive formula to obtain

$$a_2=\frac{1}{a_1+1}=\,\frac{1}{2}\,,\ \, a_3=\frac{1}{a_2+1}=\,\frac{2}{3}\,,$$

$$a_4 = \frac{1}{a_3 + 1} = \frac{3}{5}$$
 and $a_5 = \frac{1}{a_4 + 1} = \frac{5}{8}$

successively.

Answer: $\frac{5}{8}$

2. [10 points]

$$\left(a + \frac{3}{a}\right)\left(3a + \frac{1}{a}\right) = 3a^2 + \frac{3}{a^2} + 10$$

$$=3(a^2+\frac{1}{a^2})+10\geq 6\sqrt{a^2\cdot\frac{1}{a^2}}+10\,=\,16\ .$$

Therefore the minimum value of $\left(a+\frac{3}{a}\right)\left(3a+\frac{1}{a}\right)$ is 16.

Answer: 16

3

Answer:

3. [10 points]

5. [20 points]

Graphs of the two curves of of $y = 5\cos x$ and y = -x are drawn as follows.

The two curves meets at 3 points.

Answer: 3

4. [20 points]

Since $\omega^2 = \omega + 1$, we have

$$\omega^{5} - 5\omega = (\omega + 1)^{2}\omega - 5\omega$$

$$= \omega^{3} + 2\omega^{2} + \omega - 5\omega$$

$$= (\omega + 1)\omega + 2(\omega + 1) + \omega - 5\omega$$

$$= \omega^{2} - \omega + 2 = (\omega + 1) - \omega + 2 = 3$$

6. [30 points]

The line ℓ should be of the form y=m(x-2). Moreover, $2x^2-3x=m(x-2)$ has a multiple root. Therefore, the determinant D of the equation $2x^2-(3+m)x+2m=0$ should be zero. Thus, $D=m^2-10m+9=0$. Therefore m=1 or 9. So, the least slope is 1.

 $=\ln\sqrt{12}$ Thus $\lim_{n\to\infty}\left(\frac{3^{\frac{1}{n}}+4^{\frac{1}{n}}}{2}\right)^n=\sqrt{12}\,.$

 $\lim_{n\to\infty}\ln\!\left(\frac{3^{\frac{1}{n}}+4^{\frac{1}{n}}}{2}\right)^n=\!\lim_{n\to\infty}\!\frac{\ln\!\left(3^{\frac{1}{n}}+4^{\frac{1}{n}}\right)\!-\ln\!2}{\underline{1}}$

 $= \lim_{x \to 0} \frac{\ln\left(3^x + 4^x\right) - \ln 2}{x} = \frac{d}{dx} \ln\left(3^x + 4^x\right)|_{x = 0}$

Therefore, the largest integer which is not exceeding $\sqrt{12}$ is 3.

Answer: 1

Answer:

3