NAME:		2021 IUT Admission Test Answer Sheet	
1 . [10 points]		2. [10 points]	
The acceleration over a time interval $t_1 \leq t \leq t_2$ is given		The resistance of the resistor is $R = \frac{V}{L} = \frac{100 \text{ V}}{2 \Omega} = 50 \Omega$	
by $a = \frac{\Delta v}{\Delta t} = \frac{v(t_2) - v(t_1)}{v(t_2) - v(t_1)}$.		With the new voltage of 200 V, power dissipation	
$\Delta t = t_2 - t_1$ 5 m/s - 1 m/s = 2 cm		becomes $P = \frac{V^2}{R} = \frac{(200 \text{ V})^2}{50 \Omega} = 800 \text{ W}$	
Therefore, $a = \frac{6 \text{ m/s}^2}{6 \text{ s} - 0 \text{ s}} = \frac{2}{3} \text{ m/s}^2$		n 50 14	
	Answer: $\frac{2}{3}$ m/s ²	-	Answer: 800 W
3. [10 points]		4 . [20 points]	
		Since the net force is the	У
The photon energy of incident light is hf , where h is the		the magnitude of net force	
Plank constant, f is frequency: $hf = (4.1 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}) (2.0 \times 10^{15} \mathrm{Hz}) = 8.2 \mathrm{eV}$ In the photoelectric effect, the kinetic energy is given by $KE = hf - \Phi$. Therefore, the kinetic energy is $KE = 8.2 \mathrm{eV} - 4.6 \mathrm{eV} = 3.6 \mathrm{eV}$		$F_{\rm net} = F_1 = F_2 = 10 \mathrm{N}.$	$F_1 \rightarrow x$
		Therefore,	F.,
			F ₂ 30°
		$a = \frac{F_{\neq t}}{10 \text{ N}} = \frac{10 \text{ N}}{5 \text{ m/s}^2}$	
		m 2 kg	- ()
	Answer: 3.6 eV		Answer: 5 m/s ²
5. [20 points] The equivalent capacitance of two capacitors in parallel, 2 μ F and 1 μ F is equal to 3 μ F (= 2 μ F + 1 μ F). Then, the circuit is equivalent to the series combination		6. [30 points]	
		The total momentum of the system must be conserved before and after the collicion	
		m v = (M+m) V	
		Therefore, the speed of the block just after the collision	
		$V = \frac{m}{2} v = \frac{0.1 \text{ kg}}{5.1 \text{ m/s}} \times 51 \text{ m/s} = 1 \text{ m/s}.$	
of two capacitors with capacitance 3 μF and 6 $\mu F.$ The		M+m 5.1 kg	
equivalent capacitance of the circuit, C_{eq} is given by the		kinetic energy just after the collision should be same as	
equation,		the potential energy at the height <i>H</i> .	
$\frac{1}{C_{eq}} = \frac{1}{3\mu\text{F}} + \frac{1}{6\mu\text{F}}$, from which C_{eq} is calculated		$\frac{1}{2} (M+m) V^2 = (M+m)gH$	
to be 2 µF.		$V^2 = (1 \text{ m/s})^2$	
Then, the total accumulated charge of the circuit is given as $Q = C_{eq} V = 2 \mu F \times 9 V = 18 \mu C$		Therefore, $H = \frac{1}{2g} = \frac{1}{2 \times 10 \mathrm{m/s^2}} = 0.05 \mathrm{m}$	
Therefore, the voltage across the $6-\mu F$ capacitor is			
obtained to be $\frac{18\mu\text{C}}{6\mu\text{F}} = 3\text{V}$			
	Answer: 3V		Answer: 0.05 m