2021 IUT Admission Test (SOCIE, Contract-Based)

(1) When $\alpha=\frac{5}{\sqrt{8}+\sqrt{3}}$ and $\beta=\frac{5}{\sqrt{8}-\sqrt{3}}$,
find $\alpha^{3}+\beta^{3}$.
(SOL) : Note that $\alpha=\frac{5}{\sqrt{8}+\sqrt{3}}=\frac{5(\sqrt{8}-\sqrt{3})}{5}=\sqrt{8}-\sqrt{3}$ and
$\beta=\frac{5}{\sqrt{8}-\sqrt{3}}=\frac{5(\sqrt{8}+\sqrt{3})}{5}=\sqrt{8}+\sqrt{3}$. Hence, $\alpha+\beta=2 \sqrt{8}=4 \sqrt{2}, \alpha \beta=5$
and $\alpha^{2}+\beta^{2}=2(8+3)=22$. It follows that

$$
\alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}-\alpha \beta+\beta^{2}\right)=4 \sqrt{2} \times(22-5)=68 \sqrt{2} .
$$

(2) When $\sin \alpha+\cos \alpha=\frac{1}{4}$ for $0 \leq \alpha \leq \frac{\pi}{4}$, find $\sin \alpha-\cos \alpha$.
(SOL) : Since $\frac{1}{16}=(\sin \alpha+\cos \alpha)^{2}=1+2 \sin \alpha \cos \alpha$, we get $2 \sin \alpha \cos \alpha=-\frac{15}{16}$.
Note that $(\sin \alpha-\cos \alpha)^{2}=1-2 \sin \alpha \cos \alpha=1+\frac{15}{16}=\frac{31}{16}$.
Since $\sin \alpha-\cos \alpha \leq 0$ for $0 \leq \alpha \leq \pi / 4$, it follows that $\sin \alpha-\cos \alpha=-\frac{\sqrt{31}}{4}$.
(3) Evaluate $\sum_{n=1}^{100}\left(\frac{1+i}{1-i}\right)^{n}$.
(SOL): We note that $\frac{1+i}{1-i}=\frac{(1+i)(1+i)}{(1-i)(1+i)}=\frac{2 i}{2}=i$.

$$
\sum_{n=1}^{100}\left(\frac{1+i}{1-i}\right)^{n}=\sum_{n=1}^{100} i^{n}=\frac{i^{101}-i}{i-1}=\frac{i\left(i^{100}-1\right)}{i-1}=0 .
$$

(4) Find the sum of all integers a such that $3^{2 x}-3^{x+1}+a=0$ has two distinct real solutions.
(SOL) : The equation is $\left(3^{x}\right)^{2}-3\left(3^{x}\right)+a=0$, which yields $3^{x}=\frac{3 \pm \sqrt{9-4 a}}{2}$.
Hence, when $9-4 a>0$ and $3-\sqrt{9-4 a}>0$, the equation has two distinct real solutions. From $9-4 a>0$, we get $a<\frac{9}{4}$. From $3-\sqrt{9-4 a}>0$, we get $\sqrt{9-a}<3$, which is $9-a<9$ and $a>0$. Hence, $0<a<\frac{9}{4}$ and the possible integers between 0 and $\frac{9}{4}$ are 1,2 , whose sum is 3 .
(5) When $f(x)=\frac{\sin \left(x^{2}\right)}{x}$, find $f^{\prime}(\sqrt{\pi})$.
(SOL) : Since $f^{\prime}(x)=\frac{2 x^{2} \cos \left(x^{2}\right)-\sin \left(x^{2}\right)}{x^{2}}$, it follows that

$$
f^{\prime}(\sqrt{\pi})=\frac{2 \pi \cos (\pi)-\sin (\pi)}{\pi}=-2 .
$$

(6) Evaluate $\int_{1}^{2} x^{3} \sqrt{x^{2}-1} d x$.
(SOL) : Putting $t=x^{2}-1$, then $x^{2}=t+1$ and $x d x=\frac{1}{2} d t$.

$$
\begin{gathered}
\int_{1}^{2} x^{3} \sqrt{x^{2}-1} d x=\int_{1}^{2} x^{2} \sqrt{x^{2}-1} x d x=\frac{1}{2} \int_{0}^{3}(t+1) t^{1 / 2} d t=\frac{1}{2} \int_{0}^{3}\left(t^{3 / 2}+t^{1 / 2}\right) d t \\
=\frac{1}{2}\left[\frac{2}{5} t^{5 / 2}+\frac{2}{3} t^{3 / 2}\right]_{0}^{3}=\frac{\sqrt{3}}{2}\left(\frac{18}{5}+2\right)=\frac{14 \sqrt{3}}{5} .
\end{gathered}
$$

(7) Find the area of the region enclosed by $y=x^{2}+x$ and $y=-x^{2}+3 x$.
(SOL) : Since two curves $y=x^{2}+x$ and $y=-x^{2}+3 x$ intersect at $x=0,1$, the area of the region is

$$
\int_{0}^{1}\left[\left(-x^{2}+3 x\right)-\left(x^{2}+x\right)\right] d x=\int_{0}^{1}\left(-2 x^{2}+2 x\right) d x=\left[-\frac{2}{3} x^{3}+x^{2}\right]_{0}^{1}=\frac{1}{3} .
$$

