2021 IUT Admission Test (SOCIE Scholarship)

(1) When $\alpha^{2}=4+\sqrt{12}$ and $\beta^{2}=4-\sqrt{12}$, find $\alpha^{3}+\beta^{3}$, where $\alpha>0$ and $\beta>0$.
(SOL) : Since $\alpha>0$, it follows that
$\alpha=\sqrt{4+\sqrt{12}}=\sqrt{4+2 \sqrt{3}}=\sqrt{(\sqrt{3}+1)^{2}}=\sqrt{3}+1$. Similarly, since $\beta>0$, we get
$\beta=\sqrt{4-\sqrt{12}}=\sqrt{4-2 \sqrt{3}}=\sqrt{(\sqrt{3}-1)^{2}}=\sqrt{3}-1$. Hence, $\alpha+\beta=2 \sqrt{3}$ and $\alpha \beta=2$. Since $\alpha^{2}+\beta^{2}=8$, it follows that

$$
\alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}-\alpha \beta+\beta^{2}\right)=2 \sqrt{3}(8-2)=12 \sqrt{3} .
$$

(2) Evaluate $\operatorname{tg} \frac{3 \pi}{10} \operatorname{tg} \frac{6 \pi}{5}$.
(SOL) : We note that

$$
\operatorname{tg} \frac{3 \pi}{10} \operatorname{tg} \frac{6 \pi}{5}=\operatorname{tg} \frac{3 \pi}{10} \operatorname{tg} \frac{\pi}{5}=\frac{\sin \frac{3 \pi}{10}}{\cos \frac{3 \pi}{10}} \frac{\sin \frac{\pi}{5}}{\cos \frac{\pi}{5}}=\frac{\sin \left(\frac{\pi}{2}-\frac{\pi}{5}\right)}{\cos \left(\frac{\pi}{2}-\frac{\pi}{5}\right)} \frac{\sin \frac{\pi}{5}}{\cos \frac{\pi}{5}}=\frac{\cos \frac{\pi}{5}}{\sin \frac{\pi}{5}} \frac{\sin \frac{\pi}{5}}{\cos \frac{\pi}{5}}=1
$$

(3) Evaluate $\lim _{x \rightarrow 1} \frac{-2+\sqrt{5-x}}{-1+\sqrt{2-x}}$.
(SOL) : We note that

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{-2+\sqrt{5-x}}{-1+\sqrt{2-x}}= & \lim _{x \rightarrow 1} \frac{(\sqrt{5-x}-2)(\sqrt{5-x}+2)(\sqrt{2-x}+1)}{(\sqrt{2-x}-1)(\sqrt{2-x}+1)(\sqrt{5-x}+2)} \\
& =\lim _{x \rightarrow 1} \frac{(5-x-4)(\sqrt{2-x}+1)}{(2-x-1)(\sqrt{5-x}+2)}=\frac{2}{4}=\frac{1}{2}
\end{aligned}
$$

(4) Find the maximum and minimum values of $f(x)=x^{3}-6 x^{2}+9 x+4$ for $0 \leq x \leq 5$.
(SOL) : Since $f^{\prime}(x)=3 x^{2}-12 x+9=3(x-1)(x-3)$, it follows that $f^{\prime}(x)=0$ at $x=1$ and $x=3$. Since $f(0)=4, f(1)=8, f(3)=4, f(5)=24$, the minimum value is 4 and the maximum value is 24 .
(5) Evaluate $\int_{0}^{\pi} x^{2} \sin x d x$.
(SOL) : Using integration by parts, it follows that

$$
\begin{aligned}
\int x^{2} \sin x d x & =-x^{2} \cos x+\int 2 x \cos x d x=-x^{2} \cos x+2 x \sin x-\int 2 \sin x d x \\
& =-x^{2} \cos x+2 x \sin x+2 \cos x+C,
\end{aligned}
$$

which yields

$$
\int_{0}^{\pi} x^{2} \sin x d x=\left[-x^{2} \cos x+2 x \sin x+2 \cos x\right]_{0}^{\pi}=\pi^{2}-4 .
$$

(6) Find the volume of the solid obtained by rotating the region enclosed by $y=x^{2}$ and $y=\sqrt{8 x}$ about the x-axis.
(SOL) : From $x^{2}=\sqrt{8 x}$, we get $x^{4}=8 x$, which is
$x\left(x^{3}-8\right)=x(x-2)\left(x^{2}+2 x+4\right)$. Hence, two curves meet at $x=0$ and $x=2$.
Hence, the volume is
$\int_{0}^{2} \pi\left\{(\sqrt{8 x})^{2}-\left(x^{2}\right)^{2}\right\} d x=\pi \int_{0}^{2}\left(8 x-x^{4}\right) d x=\pi\left[4 x^{2}-\frac{1}{5} x^{5}\right]_{0}^{2}=\pi\left(16-\frac{32}{5}\right)=\frac{48 \pi}{5}$.

