1. Find $\lim _{x \rightarrow 0} \frac{\log _{6}\left(x^{2}+x+1\right)}{2^{x}+3^{x}-2}$.

Sol) Setting $f(x)=\log _{6}\left(x^{2}+x+1\right)$ and $g(x)=2^{x}+3^{x}-2$, then $f(0)=g(0)=0$.
We note that

$$
\lim _{x \rightarrow 0} \frac{\log _{6}\left(x^{2}+x+1\right)}{2^{x}+3^{x}-2}=\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{g(x)-g(0)}=\lim _{x \rightarrow 0} \frac{\frac{f(x)-f(0)}{x-0}}{\frac{g(x)-g(0)}{x-0}}=\frac{f^{\prime}(0)}{g^{\prime}(0)} .
$$

Since $f^{\prime}(x)=\frac{1}{\ln 6} \frac{2 x+1}{x^{2}+x+1}$ and $g^{\prime}(x)=2^{x} \ln 2+3^{x} \ln 3$, it follows that
$\lim _{x \rightarrow 0} \frac{\log _{6}\left(x^{2}+x+1\right)}{2^{x}+3^{x}-2}=\frac{f^{\prime}(0)}{g^{\prime}(0)}=\frac{\frac{1}{\ln 6}}{\ln 2+\ln 3}=\frac{1}{(\ln 6)^{2}}$.

The answer is (5).
2. When t is a solution of $x^{6}+x^{5}+\cdots+x+1=0$, and $\sum_{n=0}^{50} t^{n}=a t^{2}+b t+c$ for some integers a, b, c, find $a+b+c$.
Sol) Since $t^{7}-1=(t-1)\left(t^{6}+t^{5}+\cdots+t+1\right)=0$, it follows that $t^{7}=1$. Hence, $\sum_{n=0}^{50} t^{n}=\frac{1-t^{51}}{1-t}=\frac{1-\left(t^{7}\right)^{7} t^{2}}{1-t}=\frac{1-t^{2}}{1-t}=1+t$. Hence, $a+b+c=0+1+1=2$.

The answer is (2).
3. When $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right), B=\left(\begin{array}{cc}5 & 3 \\ -2 & 7\end{array}\right)$ and $B^{-1} A^{27} B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, find $a+b+c+d$.

Sol) Simple computation shows that $A^{2}=\left(\begin{array}{ll}-1 & 1 \\ -1 & 0\end{array}\right), A^{3}=\left(\begin{array}{ll}-1 & 1 \\ -1 & 0\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right)=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$.
Hence, $A^{27}=\left(A^{3}\right)^{9}=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$, and
$B^{-1} A^{27} B=-B^{-1} B=-\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$. Thus, $a+b+c+d=-2$.

The answer is (1).
4. Find the sum of all solutions of

$$
\sin x-\sqrt{3} \cos x=1,(0 \leq x \leq 2 \pi)
$$

Sol) We note that $\sin x-\sqrt{3} \cos x=1$ is equal to $\frac{1}{2} \sin x-\frac{\sqrt{3}}{2} \cos x=\frac{1}{2}$, which is $\sin \left(x-\frac{\pi}{3}\right)=\frac{1}{2}$. Hence, $x-\frac{\pi}{3}=\frac{\pi}{6}, \frac{5 \pi}{6}$. This gives $x=\frac{\pi}{2}, \frac{7 \pi}{6}$. The sum is $\frac{\pi}{2}+\frac{7 \pi}{6}=\frac{10 \pi}{6}=\frac{5 \pi}{3}$.

The answer is (5).
5. Find the maximum value of $f(x)=\frac{\sqrt{x}}{3 x^{2}+1}$ for $x>0$.

Sol) $f^{\prime}(x)=\frac{\frac{1}{2 \sqrt{x}}\left(3 x^{2}+1\right)-\sqrt{x}(6 x)}{\left(3 x^{2}+1\right)^{2}}=\frac{\left(3 x^{2}+1\right)-12 x^{2}}{2 \sqrt{x}\left(3 x^{2}+1\right)^{2}}=\frac{1-9 x^{2}}{2 \sqrt{x}\left(3 x^{2}+1\right)^{2}}$
Hence, $f(x)$ has a maximum value at $x=\frac{1}{3}$, which is $f\left(\frac{1}{3}\right)=\frac{\sqrt{3}}{4}$.

The answer is (3).
6. Find the volume of the solid obtained by rotating the region enclosed by $y=-x^{2}+4$ and $y=x+2$ about the x-axis.
Sol) Two graphs meet at $x=-2$ and $x=1$. Hence the volume is given by

$$
\begin{aligned}
& \pi \int_{-2}^{1}\left(\left(-x^{2}+4\right)^{2}-(x+2)^{2}\right) d x=\pi \int_{-2}^{1}\left(x^{4}-8 x^{2}+16-x^{2}-4 x-4\right) d x \\
& \quad=\pi \int_{-2}^{1}\left(x^{4}-9 x^{2}-4 x+12\right) d x=\pi\left[\frac{1}{5} x^{5}-3 x^{3}-2 x^{2}+12 x\right]_{-2}^{1} \\
& \quad=\pi\left(\frac{1}{5}-3-2+12-\left(-\frac{32}{5}+24-7-24\right)\right)=\frac{108}{5} \pi
\end{aligned}
$$

The answer is (4).

