The Solution of SOCIE Sample Test

1. Compute $\log _{3} \sqrt{108}+\log _{\frac{1}{9}} 4+2^{\log _{\frac{1}{2}} 3}$.

Sol) $\log _{3} \sqrt{108}+\log _{\frac{1}{9}} 4+2^{\log _{\frac{1}{2}} 3}$

$$
\begin{aligned}
& =\log _{3}\left(2^{2} 3^{3}\right)^{\frac{1}{2}}+\log _{3^{-2}} 2^{2}+2^{\log _{2^{-1}} 3} \\
& =\log _{3} 2 \cdot 3^{\frac{3}{2}}+\frac{2}{-2} \log _{3} 2+2^{\log _{2} 3^{-1}} \\
& =\log _{3} 2 \cdot 3^{\frac{3}{2}}-\log _{3} 2+3^{-1} \\
& =\log _{3} 3^{\frac{3}{2}}+\frac{1}{3}=\frac{3}{2}+\frac{1}{3}=\frac{11}{6}
\end{aligned}
$$

The answer is (3).
2. Compute $\sin \frac{13 \pi}{12}$.

Sol) $\sin \left(\frac{13 \pi}{12}\right)=\sin \left(\frac{\pi}{3}+\frac{3 \pi}{4}\right)$

$$
=\sin \frac{\pi}{3} \cos \frac{3 \pi}{4}+\cos \frac{\pi}{3} \sin \frac{3 \pi}{4}
$$

$$
=\frac{1}{2} \cdot \frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2} \cdot \frac{-\sqrt{2}}{2}
$$

$$
=\frac{\sqrt{2}-\sqrt{6}}{4}
$$

The answer is (2).
3. When $\left(\begin{array}{cc}1 & 3 \\ 0 & -1\end{array}\right)^{-1}\left(\begin{array}{cc}-2 & 2 \\ 1 & 1\end{array}\right)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, find $a+b+c+d$.

Sol) $\left(\begin{array}{cc}1 & 3 \\ 0 & -1\end{array}\right)^{-1}\left(\begin{array}{cc}-2 & 2 \\ 1 & 1\end{array}\right)=\left(\begin{array}{cc}1 & 3 \\ 0 & -1\end{array}\right)\left(\begin{array}{cc}-2 & 2 \\ 1 & 1\end{array}\right)=\left(\begin{array}{cc}1 & 5 \\ -1 & -1\end{array}\right)$. Hence, $a+b+c+d=4$.
The answer is (1).
4. When $\omega=\frac{1+\sqrt{3} i}{\sqrt{2}}$, find ω^{30}.

Sol) Note that $\omega^{2}=\frac{-2+2 \sqrt{3} i}{2}=-1+\sqrt{3} i$ and
$\omega^{3}=\omega \cdot \omega^{2}=\frac{1+\sqrt{3} i}{\sqrt{2}} \cdot(-1+\sqrt{3} i)=\frac{-1-3}{\sqrt{2}}=-2 \sqrt{2}$.
Hence, $\omega^{30}=\left(\omega^{3}\right)^{10}=(-2 \sqrt{2})^{10}=2^{10} \cdot \sqrt{2^{10}}=2^{15}$.
The answer is (4).
5. Find the maximum value of $f(x)=\frac{x}{x^{2}+3}$.

Sol) From $f^{\prime}(x)=\frac{x^{2}+3-2 x^{2}}{\left(x^{2}+3\right)^{2}}=\frac{3-x^{2}}{\left(x^{2}+3\right)^{2}}, f^{\prime}(x)=0 \quad$ at $x=-\sqrt{3}$ and $x=\sqrt{3}$. Since $f(x)<0$ for $x<0$ and $f(x)>0$ for $x>0$ and $\lim _{x \rightarrow \pm \infty} f(x)=0, f(x)$ has a maximum value at $x=\sqrt{3}$, which is $f(\sqrt{3})=\frac{\sqrt{3}}{3+3}=\frac{\sqrt{3}}{6}$.
The answer is (3).
6. Find the area of the region enclosed by $y=x^{5}+2 x^{4}+x^{2}-1$ and $y=x^{5}+2 x^{4}+x+1$.
Sol) Since $\left(x^{5}+2 x^{4}+x+1\right)-\left(x^{5}+2 x^{4}+x^{2}-1\right)=-\left(x^{2}-x-2\right)=-(x+1)(x-2)$, two graphs meet at $x=-1$ and $x=2$. Since $x^{5}+2 x^{4}+x+1 \geq x^{5}+2 x^{4}+x^{2}-1$ on the interval $[-1,2]$, the area is given by

$$
\begin{aligned}
\int_{-1}^{2}\left(\left(x^{5}+2 x^{4}\right.\right. & \left.+x+1)-\left(x^{5}+2 x^{4}+x^{2}-1\right)\right) d x=\int_{-1}^{2}-\left(x^{2}-x-2\right) d x \\
& =\left[-\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+2 x\right]_{-1}^{2}=\left(-\frac{8}{3}+2+4\right)-\left(\frac{1}{3}+\frac{1}{2}-2\right)=\frac{9}{2}
\end{aligned}
$$

The answer is (5).

