Solution to the Sample Test for SBL

1. Simplify $\log _{2} 3 \times \log _{5} 8 \times \log _{9} 5$
(Sol) $\quad \log _{2} 3 \times \log _{5} 8 \times \log _{9} 5=\log _{2} 3 \times\left(3 \log _{5} 2\right) \times \frac{1}{2} \log _{3} 5=\frac{3}{2}$.
The answer is (2).
2. Let $A=\left(\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right)$ and $B=\left(\begin{array}{cc}-1 & 1 \\ 2 & 2\end{array}\right)$. When $A\left(B^{-1}\right)^{2}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, find $a+b+c+d$.
(Sol) Since $B^{-1}=\frac{1}{-4}\left(\begin{array}{cc}2 & -1 \\ -2 & -1\end{array}\right)$ and $B^{-2}=\frac{1}{16}\left(\begin{array}{cc}6 & -1 \\ -2 & 3\end{array}\right)$, we get
$A B^{-2}=\frac{1}{16}\left(\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right)\left(\begin{array}{cc}6 & -1 \\ -2 & 3\end{array}\right)=\frac{1}{16}\left(\begin{array}{cc}2 & 5 \\ -12 & 10\end{array}\right)$. Hence, $a+b+c+d=\frac{5}{16}$.
The answer is (3).
3. When $\omega=\frac{1}{1+\sqrt{3} i}$, find ω^{6}.
(Sol) Since $(1+\sqrt{3} i)^{3}=(1+\sqrt{3} i)^{2}(1+\sqrt{3} i)=-2(1-\sqrt{3} i)(1+\sqrt{3} i)=-8$, it follows that $w^{6}=\frac{1}{(-8)^{2}}=\frac{1}{64}$.
The answer is (5).
4. Find $\cos \left(\frac{19 \pi}{12}\right)$.
(Sol) Note that

$$
\begin{aligned}
\cos \left(\frac{19 \pi}{12}\right) & =\cos \left(\frac{5 \pi}{12}\right)=\cos \left(\frac{\pi}{4}+\frac{\pi}{6}\right)=\cos \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{6}\right)-\sin \left(\frac{\pi}{4}\right) \sin \left(\frac{\pi}{6}\right) \\
& =\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2} \cdot \frac{1}{2}=\frac{\sqrt{6}-\sqrt{2}}{4} .
\end{aligned}
$$

The answer is (2).
5. When M and m are the maximum and minimum values of $f(x)=2 x^{3}-3 x^{2}-12 x+5, \quad(-2 \leq x \leq 2)$, find $M+m$.
(Sol)
Since $f^{\prime}(x)=6 x^{2}-6 x-12=6\left(x^{2}-x-2\right)=6(x-2)(x+1), f^{\prime}(x)=0 \quad$ at $x=-1$ and $x=2$. Since $f(-2)=-16-12+24+5=1, f(-1)=-2-3+12+5=12$ and $f(2)=16-12-24+5=-15$, the maximum value is 12 and the minimum value is -15 . Hence, $M=12, m=-15$, and $M+m=-3$.
The answer is (1).
6. Find $\int_{0}^{1} x^{2}\left(2 x^{3}+1\right)^{3} d x$.
(Sol) Setting $u=2 x^{3}+1$, we get $d u=6 x^{2} d x$.
It follows that
$\int_{0}^{1} x^{2}\left(2 x^{3}+1\right)^{3} d x=\frac{1}{6} \int_{1}^{3} u^{3} d u=\left[\frac{1}{24} u^{4}\right]_{1}^{3}=\frac{27}{8}-\frac{1}{24}=\frac{10}{3}$.
The answer is (4).

