2021 IUT Admission Test (SBL, Type A) Math Examination

6. [10 points] When α , β are solutions of $x^{\log_2 x} = 4x^2$, find $\alpha\beta$.

7. [10 points]

When $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$, find $A^{-1}(3A+2B)B^{-1}$.

Find the maximum and minimum values of

$$f(x) = \frac{2x^2 + 3x + 2}{x^2 + 1}.$$

9. [20 points] Find the volume of the solid obtained by revolving the region enclosed by $y = \sqrt{x}$ and $y = \frac{1}{2}x$ about the *x*-axis.

10. [20 points]

When g(x) is the inverse function of

$$f(x) = x^3 + x + 1$$
, evaluate
 $\int_0^3 f(x) dx + \int_{f(0)}^{f(3)} g(x) dx$.

2021 IUT Admission Test Solution (SBL, Type A)

1. When $\sqrt{\frac{\sqrt[3]{3}}{\sqrt[4]{3}}}$ is written by $\sqrt[a]{b}$, find a+b. sol) Since $\sqrt{\frac{\sqrt[3]{3}}{\sqrt[4]{3}}} = \frac{3^{1/6}}{3^{1/8}} = 3^{1/24} = \sqrt[24]{3}$, it follows that a = 24, b = 3 and a+b=27.

2. Evaluate
$$\int_0^1 x (x^2 + 1)^9 dx$$
.
sol) $\int_0^1 x (x^2 + 1)^9 dx = \left[\frac{1}{20}(1 + x^2)^{10}\right]_0^1 = \frac{1023}{20}$

3. Find
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1} + (n+1)\sqrt{n}}$$
.
sol) Observe that $\frac{1}{n\sqrt{n+1} + (n+1)\sqrt{n}} = \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n(n+1)}} = \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}$
Then $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1} + (n+1)\sqrt{n}} = 1$.

4. When
$$f'(1) = 3$$
, find $\lim_{x \to 1} \frac{f(x^2) - f(1)}{x - 1}$.
sol) $\lim_{x \to 1} \frac{f(x^2) - f(1)}{x - 1} = \lim_{x \to 1} \frac{f(x^2) - f(1)}{x^2 - 1} \times (x + 1) = 2f'(1) = 6$.

5. Find the polynomial f(x) satisfying $\lim_{x \to \infty} \frac{f(x)}{x^2 + x + 1} = 2, \quad \lim_{x \to 1} \frac{f(x)}{x^2 - 4x + 3} = 4.$ sol) By the given conditions, we know that f(x) = 2(x - 1)(x + a). Since $\lim_{x \to 1} \frac{f(x)}{x^2 - 4x + 3} = \lim_{x \to 1} \frac{2(x - 1)(x + a)}{(x - 1)(x - 3)} = -(1 + a)$, we get f(x) = 2(x - 1)(x - 5).

6. When α , β are solutions of $x^{\log_2 x} = 4x^2$, find $\alpha\beta$. sol) Taking logarithm on both sides of the equation, we get $(\log_2 x)^2 - 2\log_2 x - 2 = 0$. Since it has two roots α , β , we deduce that $(\log_2 x)^2 - 2\log_2 x - 2 = (\log_2 x - \log_2 \alpha)(\log_2 x - \log_2 \beta)$. Therefore $\log_2 \alpha + \log_2 \beta = 2$, so that $\alpha \beta = 4$.

7. When
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$, find $A^{-1}(3A+2B)B^{-1}$.
sol) Since $A^{-1} = -\frac{1}{2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$, $B^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix}$, we have $A^{-1}(3A+2B)B^{-1} = 3B^{-1} + 2A^{-1} = \begin{pmatrix} -3 & 3 \\ 1 & 0 \end{pmatrix}$.

8. Find the maximum and minimum values of $f(x) = \frac{2x^2 + 3x + 2}{x^2 + 1}$. sol) Since $f'(x) = \frac{3(x^2 + 1) - 3x \cdot 2x}{x^2 + 1} = -\frac{3(x - 1)(x + 1)}{x^2 + 1}$, f(x) is increasing for -1 < x < 1 and decreasing otherwise. We also observe $\lim_{x \to \pm \infty} f(x) = 2$. Therefore f(x) has the maximum $\frac{7}{2}$ at x = 1 and the minimum $\frac{1}{2}$ at x = -1.

9. Find the volume of the solid obtained by rotating the region enclosed by $y = \sqrt{x}$ and $y = \frac{1}{2}x$ about the *x*-axis. sol) Two curves $y = \sqrt{x}$ and $y = \frac{1}{2}x$ meet at x = 0, 4. Since $0 \le \frac{x}{2} \le \sqrt{x}$ for $0 \le x \le 4$, the volume is given by $\int_{0}^{4} \pi \left\{ (\sqrt{x})^{2} - \left(\frac{x}{2}\right)^{2} \right\} dx = \pi \int_{0}^{4} \left(x - \frac{x^{2}}{4}\right) dx = \pi \left[\frac{x^{2}}{2} - \frac{x^{3}}{12}\right]_{0}^{4} = \frac{8\pi}{3}$.

10. When g(x) is the inverse function of $f(x) = x^3 + x + 1$, evaluate $\int_0^3 f(x)dx + \int_{f(0)}^{f(3)} g(x)dx.$ sol) Observe that $\int_{f(0)}^{f(3)} g(x)dx = \int_0^3 g(f(t))f'(t)dt = \int_0^3 tf'(t)dt = [tf(t)]_0^3 - \int_0^3 f(t)dt.$ Therefore, $\int_0^3 f(x)dx + \int_{f(0)}^{f(3)} g(x)dx = 3f(3) = 93.$

2021 IUT Admission Test(SOCIE, Contract-Based, Type A) Math Examination

2021 IUT Admission Test (SOCIE, Contract-Based, Type A)

(1) When α and β are solutions of $2x^2 + 5x + 2 = 0$, find $\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2}$.

(SOL) : We note that $\alpha + \beta = -\frac{5}{2}$ and $\alpha\beta = 1$. Hence,

$$\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2} = \frac{\alpha^3 + \beta^3}{\alpha^2 \beta^2} = \frac{(\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2)}{(\alpha\beta)^2} = \frac{(\alpha + \beta)((\alpha + \beta)^2 - 3\alpha\beta)}{(\alpha\beta)^2}$$
$$= -\frac{5}{2} \times \left(\frac{25}{4} - 3\right) = -\frac{5}{2} \times \frac{13}{4} = -\frac{65}{8}.$$

(2) Find the sum of all solutions $\sqrt{3} \sin x + \cos x = \sqrt{2}$ for $0 \le x \le 2\pi$. (SOL): From $\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x = \frac{\sqrt{2}}{2}$, we have $\sin\left(x + \frac{\pi}{6}\right) = \frac{\sqrt{2}}{2}$. Since $0 \le x \le 2\pi$, it follows that $x + \frac{\pi}{6} = \frac{\pi}{4}$, $\frac{3\pi}{4}$. Hence, $x = \frac{\pi}{12}$ or $\frac{7\pi}{12}$. The sum of two solutions is $\frac{\pi}{12} + \frac{7\pi}{12} = \frac{2\pi}{3}$.

(3) Evaluate $\sum_{n=1}^{99} \left(\frac{1+i}{\sqrt{2}}\right)^{2n}$. (SOL): Setting $\omega = \frac{1+i}{\sqrt{2}}$, it follows that $\omega^2 = \left(\frac{1+i}{\sqrt{2}}\right)^2 = \frac{2i}{2} = i$. Hence, $\sum_{n=1}^{99} \left(\frac{1+i}{\sqrt{2}}\right)^{2n} = \sum_{n=1}^{99} i^n = \frac{i(1-i^{99})}{1-i} = \frac{i(1-(-i))}{1-i} = \frac{i(1+i)}{1-i} = \frac{-1+i}{1-i} = -1$.

(4) When $\log_a b = \frac{1}{2}$ and 2a + 3b = 20 for a > 0 and b > 0, find ab. (SOL): Since $b = a^{\frac{1}{2}}$ or $a = b^2$, the equation 2a + 3b = 20 is reduced to $2b^2 + 3b - 20 = 0$. Since (2b - 5)(b + 4) = 0 and b > 0, it follows that $b = \frac{5}{2}$ and $a = b^2 = \frac{25}{4}$. Hence, $ab = \frac{125}{8}$.

(5) Find $\lim_{x \to 0} \frac{\sqrt{x^2 + 4} - 2}{x^3 + 2x^2}$.

(SOL) :

Note that

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 4} - 2}{x^3 + 2x^2} = \lim_{x \to 0} \frac{\left(\sqrt{x^2 + 4} - 2\right)\left(\sqrt{x^2 + 4} + 2\right)}{x^2(x+2)\left(\sqrt{x^2 + 4} + 2\right)}$$
$$= \lim_{x \to 0} \frac{x^2 + 4 - 4}{x^2(x+2)\left(\sqrt{x^2 + 4} + 2\right)} = \lim_{x \to 0} \frac{1}{(x+2)\left(\sqrt{x^2 + 4} + 2\right)} = \frac{1}{8}$$

(6) Evaluate $\int_{1}^{9} e^{2\sqrt{x}} dx$.

(SOL) : Setting $t = \sqrt{x}$, then $dt = \frac{1}{2\sqrt{x}} dx = \frac{1}{2t} dx$ and hence dx = 2t dt. It follows that

$$\begin{split} \int_{1}^{9} e^{2\sqrt{x}} \, dx \ &= \ \int_{1}^{3} 2 \, t \, e^{2t} \, dt \ &= \ \left[\, t \, e^{2t} \, \right]_{1}^{3} \ - \ \int_{1}^{3} e^{2t} \, dt \ &= \ 3 e^{6} - e^{2} - \left[\frac{1}{2} e^{2t} \right]_{1}^{3} \\ &= \ 3 e^{6} - e^{2} - \frac{1}{2} e^{6} + \frac{1}{2} e^{2} \ &= \ \frac{5}{2} e^{6} - \frac{1}{2} e^{2} \ . \end{split}$$

(7) Find the area of the region enclosed by $y = x^4 + 3x^3 - 2x + 1$ and $y = 3x^3 - 2x + 2$.

(SOL): From the equation $x^4 + 3x^3 - 2x + 1 = 3x^3 - 2x + 2$, we have $x^4 - 1 = (x^2 - 1)(x^2 + 1) = (x - 1)(x + 1)(x^2 + 1) = 0$ and x = 1, -1. This means that two curves meet at x = -1 and x = 1. Since $3x^3 - 2x + 2 \ge x^4 + 3x^3 - 2x + 1$ on [-1, 1], the area of the region is given by

$$\begin{split} \int_{-1}^{1} \{ (3x^3 - 2x + 2) - (x^4 + 3x^3 - 2x + 1) \} \, dx &= \int_{-1}^{1} (1 - x^4) \, dx = 2 \int_{0}^{1} (1 - x^4) \, dx \\ &= 2 \left[x - \frac{1}{5} x^5 \right]_{x=0}^{1} = \frac{8}{5} \, . \end{split}$$

2021 IUT Admission Test(SOCIE) Physics Examination

NAME:		2021 IUT Admission Test Answer Sheet	
1. [5 points]		2. [5 points]	
	Answer:		Answer:
3. [5 points]		4. [5 points]	
	Answer:		Answer:
5. [10 points]		6. [20 points]	
	Answer:		Answer:
7. [20 points]		8. [10 points] The total momentum of the system must be conserved before and after the collision. mv = (M+m) V Therefore, the speed of the block just after the collision $V = \frac{m}{M+m}v = \frac{0.1 \text{ kg}}{5.1 \text{ kg}} \times 51 \text{ m/s} = 1 \text{ m/s}.$ Now due to the conservation of mechanical energy, the kinetic energy just after the collision should be same as the potential energy of the spring at the maximum compression. $\frac{1}{2} (M+m) V^2 = \frac{1}{2} kx^2$ Therefore, $x = \sqrt{\frac{M+m}{k}} V = \sqrt{\frac{5.1 \text{ kg}}{510 \text{ N/m}}} \times 1 \text{ m/s} = 0.1 \text{ m}$	
Q [10 moints]	Answer:	10 [10 moints]	Answer: 0.1 m
The electrical energy converted into heat is given by $Q = I^2 R t$, where I is current, R is resistance, and t is time in seconds. Inserting the values in the problem, the heat is determined to be $(0.5 \text{ A})^2 \times 20 \ \Omega \times 60 \text{ sec} = 300 \text{ J}$		The energy level of a hydrogen atom is expressed as $E_n = \frac{-13.6 \text{ eV}}{n^2}$, where <i>n</i> is an integer. So, the energy in the <i>n</i> = 2 state is $E_2 = \frac{-13.6 \text{ eV}}{2^2} = -3.4 \text{ eV}$. Therefore, the minimum energy to ionize the hydrogen atom is $0 - E_2 = 3.4 \text{ eV}$.	
	Answer: 300 J		Answer: 3.4 eV