2022 IUT Admission Test(SBL, Type A) Math Examination

< Multiple choice Types > There is only one correct answer per each question. Mark your answer choice on the OMR answer sheet.

- For each correct answer, you will get the points indicated next to each question number.
- No penalty point is applied to an incorrect answer.

1 [4 points]

When $a = \frac{\sqrt{3 + \sqrt{5}}}{\sqrt{3 - \sqrt{5}}}$ and $b = \frac{\sqrt{3 - \sqrt{5}}}{\sqrt{3 + \sqrt{5}}}$, find a + b. (1) 1 (2) 3 (3) 5 (4) 7 (5) 9

2. ^[4 points]

When $a + \frac{1}{a} = 3$, find $a^3 + \frac{1}{a^3}$. ① 12 ② 14 ③ 16 ④ 18 ⑤ 20

3. $\frac{[4 \text{ points}]}{\text{Compute } \log_3 4 \times \log_2 7 \times \log_7 9}.$ (1) 2 (2) 4 (3) 6 (4) 8 (5) 10

4 [4 points]

When $4x^3 + ax^2 + bx + c$ is divided by $x^2 - 1$, the remainder is 0. When $4x^3 + ax^2 + bx + c$ is divided by x - 2, the remainder is 24. Find $a^2 + b^2 + c^2$. (1) 12 (2) 14 (3) 16 (4) 18 (5) 20

- 5. [4 points] When x > 0, y > 0 and xy = 6, find the minimum value of $\frac{1}{x^2} + \frac{1}{y^2}$. (1) $\frac{1}{2}$ (2) $\frac{1}{3}$ (3) $\frac{1}{4}$ (4) $\frac{1}{5}$ (5) $\frac{1}{6}$
- 6. [4 points] When $17^{x} = 16$ and $68^{y} = 8$, find $\frac{4}{x} - \frac{3}{y}$. (1) -2 (2) -1 (3) 0 (4) 1 (5) 2

- 8. [5 points] When $A = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 2 \\ 8 & 5 \end{pmatrix}$ and $A^{-1}B^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, find a + b + c + d. (1) 1 (2) 3 (3) 5 (4) 7 (5) 9
- 9. [5 points] When α , β and γ are the solutions of $x^{3} + 2x - 10 = 0$, find $\frac{1}{\alpha^{2}} + \frac{1}{\beta^{2}} + \frac{1}{\gamma^{2}}$. (1) $\frac{1}{10}$ (2) $\frac{1}{15}$ (3) $\frac{1}{20}$ (4) $\frac{1}{25}$ (5) $\frac{1}{30}$

10. [5 points]

Compute
$$\left(\frac{1+\sqrt{3}i}{2}\right)^{2022}$$
.
(1) i (2) $-i$ (3) 1 (4) -1 (5) $\frac{1-\sqrt{3}i}{2}$

Compute $\cos\frac{7\pi}{12}$.

When
$$\sin 2\theta = \frac{3}{5}$$
 and $0 < \theta < \frac{\pi}{4}$, find $\sin \theta$.

13 [5 points]

When α and β are the solutions of $\cos 2x + 3\sin x + 1 = 0$, $(0 \le x \le 2\pi)$, find $\alpha + \beta$. ① π ② 2π ③ 3π ④ 4π ⑤ 5π

14. [5 points]

Find the sum of all solutions of $4^x - 2^{x+1} + 2^{-x+1} = 1 .$

Find
$$\lim_{x \to 0} \frac{2x^3}{(1 - \cos x) \sin 3x}$$
.
(1) 1 (2) 2 (3) $\frac{3}{2}$ (4) $\frac{4}{3}$ (5) $\frac{5}{4}$

16. [6 points]

Find the minimum value of

$$f(x) = \frac{1}{4}x^4 + 2x^2 - 5x + 3.$$
(1) $\frac{1}{4}$ (2) $\frac{5}{4}$ (3) $\frac{9}{4}$ (4) $\frac{13}{4}$ (5) $\frac{17}{4}$

17. [6 points] When y = ax + b is the tangent line to $y = x^3 - x^2 + x + 1$ at (1,2), find a + b. (1) 2 (2) 4 (3) 6 (4) 8 (5) 10

When
$$f(x) = \frac{2}{\sqrt{x+1}}$$
, find $f'(4)$.

19. [6 points]
Find
$$\int_0^1 (2x+1)^{10} dx$$
.
(1) $\frac{1}{22}(3^{11}-1)$ (2) $\frac{1}{33}(3^{11}-1)$ (3) $\frac{1}{44}(3^{11}-1)$
(4) $\frac{1}{55}(3^{11}-1)$ (5) $\frac{1}{66}(3^{11}-1)$

20 [6 points]

Find the area of the region enclosed by two curves $y = x^2$ and y = -x + 2.

 $\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\end{array}$

2022 IUT Admission Test (SBL) Answers

Type <i>I</i>	4
---------------	---

1	2	3	4	5	6	7	8	9	10
2	4	2	3	2	1	1	3	4	3
11	12	13	14	15	16	17	18	19	20
5	5	3	4	4	1	1	5	1	5

2022 IUT Admission Test(SOCIE, Type A) Math Examination

< Multiple choice Types > There is only one correct answer per each question. Mark your answer choice on the OMR answer sheet.

- O For each correct answer, you will get the points indicated next to each question number.
- No penalty point is applied to an incorrect answer.

1. [4 points] When $a = \sqrt{2} + \sqrt{3}$ and $b = \sqrt{2} - \sqrt{3}$, find $a^3 - b^3$. (1) $12\sqrt{3}$ (2) $15\sqrt{3}$ $3 18\sqrt{3}$

- (4) $21\sqrt{3}$ (5) $24\sqrt{3}$
- 2^[4 points]

When $\frac{3^t + 3^{-t}}{3^t - 3^{-t}} = \sqrt{5}$, find $A = 9^t + 9^{-t}$. (2) 3 (3) 5 (4) 7 (5) 9 ① 1

3 [4 points] When $2^a = 4^b$ and $\frac{a}{b} = \log_3 c$, find c.

$$(1) \frac{1}{9} \qquad (2) \frac{1}{3} \qquad (3) 1 \qquad (4) 3 \qquad (5) 9$$

4 [4 points]

When
$$A = \begin{pmatrix} 2 & 1 \\ 3 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and
 $ABA^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, find $a + b + c + d$.
(1) -2 (2) -1 (3) 0 (4) 1 (5) 2

5. [5 points]
Compute
$$\left(\frac{1+\sqrt{3}i}{1+i}\right)^{12}$$
.
(1) $64i$ (2) $-64i$ (3) 64 (4) -64 (5) $64\sqrt{3}$

- 6 ^[5 points] When α and β are the solutions of $\frac{2}{\log_2 x + 3} = \log_4 x, \text{ find } \alpha\beta.$
 - 1) $\frac{1}{2}$ 2) $\frac{1}{4}$ 3) $\frac{1}{6}$ 4) $\frac{1}{8}$ 5) $\frac{1}{10}$
- 7 [5 points] When $\cos \alpha + \cos \beta = \frac{4}{3}$ and $\sin \alpha + \sin \beta = \frac{2}{3}$, find $\cos(\alpha - \beta).$
 - (1) $\frac{1}{9}$ (2) $\frac{2}{9}$ (3) $\frac{1}{3}$ (4) $\frac{4}{9}$ (5) $\frac{5}{9}$
- 8 [5 points] Compute $\lim_{x \to 0} \frac{(1 - \cos 2x) tg(x^2)}{4x^4}$, where $tg(x) = \frac{\sin x}{\cos x}$ $(1) \frac{1}{4} \quad (2) \frac{1}{2} \quad (3) \quad (4) \quad (2)$ 5 4

9 [5 points]

When *M* and *m* are the maximum and minimum values of $f(x) = x^4 + 4x + 1$, $(-2 \le x \le 2)$, find M+m. (1) 21 (2) 23 (3) 25 (4) 27 (5) 29 12. [6 points] Compute $\int_0^1 x (1-x)^{100} dx$. (1) $\frac{1}{99 \times 100}$ (2) $\frac{1}{100 \times 101}$ (3) $\frac{1}{101 \times 102}$ (4) $\frac{1}{102 \times 103}$ (5) $\frac{1}{103 \times 104}$

10. [5 points]
When
$$f(x) = \frac{\sqrt[3]{x-1}}{\sqrt[3]{x+1}}$$
, find $f'(8)$.
(1) $\frac{1}{38}$ (2) $\frac{1}{42}$ (3) $\frac{1}{46}$ (4) $\frac{1}{50}$ (5) $\frac{1}{54}$

13. [6 points] Find the area of the region enclosed by $y = x^4 - x$ and $y = x - x^2$. ① $\frac{1}{15}$ ② $\frac{1}{5}$ ③ $\frac{1}{3}$ ④ $\frac{7}{15}$ ⑤ $\frac{3}{5}$

14_.[6 points]

Find the volume of the solid obtained by rotating the region bounded by $y = \ln x$, $(1 \le x \le e)$, x = e and the *x*-axis about the *x*-axis.

(1) $\pi(e-2)$ (2) $\pi(e-1)$ (3) πe (4) $\pi(e+1)$ (5) $\pi(e+2)$

11 [6 points]

Compute
$$\int_{0}^{\frac{\pi}{2}} \sin(2x)\cos(\cos x) dx$$
.
(1) $2\sin 1$ (2) $2\cos 1$ (3) $2(\sin 1 - 1)$
(4) $2(\cos 1 - 1)$ (5) $2(\sin 1 + \cos 1 - 1)$

2022 IUT Admission Test (SOCIE) Answers

1	2	3	4	5	6	7	8	9	10
3	2	5	1	4	4	1	2	2	5
11	12	13	14	15	16	17	18	19	20
5	3	4	1						

2022 IUT Admission Test(SOCIE) Physics Examination(A TYPE)

<Multiple choice Types> There is only one correct answer per each question. Mark your answer choice on the OMR answer sheet.

- For each correct answer, you will get the points indicated next to each question number.
- \odot No penalty point is applied to an incorrect answer.
- 1. [4 points]

As shown in the figure, objects A and B with masses of 1 kg and 2 kg collide head-on with a speed of 3 m/s, respectively, and then move in opposite directions on a frictionless floor. The speed of B after the collision is 1 m/s. What is the speed of object A after the collision?

U	2	m/s	4	3	m/s	C	৩	4
(4)	5	m/s	(5)	6	m/s			

2. [6 points]

As shown in the figure, one end of the string of length l = 10 m is fixed, and an object of mass m = 2 kg is suspended at the other end to have a uniform circular motion in the horizontal plane. The string makes an angle $\theta = 30^{\circ}$ with the vertical line. What is the period of the object in circular motion? (Assume that the gravitational acceleration is $g = 10 \text{ m/s}^2$, and air resistance is neglected)

1)
$$2\pi s$$
 2) $2\sqrt{3}\pi s$ 3) $\sqrt{3}\pi s$
4) $\sqrt{\sqrt{3}}\pi s$ 5) $\sqrt{2\sqrt{3}}\pi s$

3. [5 points]

As shown in the figure, the potential difference between the two plates is V=3V, and the distance between parallel conductors is d = 2 cm, A particle with a charge of q = -0.4 C is at rest under gravity and electric force. What is the mass of the particle? (Assume that the gravitational acceleration is $g = 10 \text{ m/s}^2$)

4. [4 points]

As shown in the figure, the current I flows upward in the straight wire. When a positively charged particle of +q is incident in the same direction as the current, what is the direction of force that is exerted on this particle?

- ① A ② B ③ C
- ④ D ⑤ out of the page

5. [6 points]

Objects A, B, and C have masses of 3m, 2m, and m, respectively. The three objects are connected with two springs with spring constants k_1 and k_2 and placed on a frictionless horizontal surface as shown in the figure. When a force F is applied to object C in the horizontal direction, the three objects move with a constant acceleration, and the stretched lengths of the two springs are the same. What is the ratio of the

two spring constants, $\frac{k_1}{k_2}$? (Here, the mass of the spring is ignored)

6. [5 points]

What is the position and size of the image produced when a 3-cm-long object is placed 60 cm in front of a concave mirror with a focal length of 20 cm?

20 cm, 1 cm
 20 cm, 2 cm
 30 cm, 1.5 cm
 30 cm, 2 cm

2022 IUT Admission Test(SOCIE) Physics Examination(A TYPE) Answers

<Multiple choice Types> There is only one correct answer per each question. Mark your answer choice on the OMR answer sheet.

- For each correct answer, you will get the points indicated next to each question number.
- \odot No penalty point is applied to an incorrect answer.

Answers: 1. 4, 2. 5, 3. 4, 4. 2, 5. 1, 6. 3