2022 IUT Admission Test(SBL, Type A)
 Math Examination

<Multiple choice Types > There is only one correct answer per each question. Mark your answer choice on the OMR answer sheet.

For each correct answer, you will get the points indicated next to each question number.

O No penalty point is applied to an incorrect answer.

1 [4 points]
When $a=\frac{\sqrt{3+\sqrt{5}}}{\sqrt{3-\sqrt{5}}}$ and $b=\frac{\sqrt{3-\sqrt{5}}}{\sqrt{3+\sqrt{5}}}$,
find $a+b$.
(1) 1
(2) 3
(3) 5
(4) 7
(5) 9

2 [4 points]
When $a+\frac{1}{a}=3$, find $a^{3}+\frac{1}{a^{3}}$.
(1) 12
(2) 14
(3) 16
(4) 18
(5) 20

3 [4 points]
Compute $\log _{3} 4 \times \log _{2} 7 \times \log _{7} 9$.
(1) 2
(2) 4
(3) 6
(4) 8
(5) 10

4 [4 points]
When $4 x^{3}+a x^{2}+b x+c$ is divided by $x^{2}-1$, the remainder is 0 . When $4 x^{3}+a x^{2}+b x+c$ is divided by $x-2$, the remainder is 24 . Find $a^{2}+b^{2}+c^{2}$.
(1) 12
(2) 14
(3) 16
(4) 18
(5) 20

5 [4 points]
When $x>0, y>0$ and $x y=6$, find the minimum value of $\frac{1}{x^{2}}+\frac{1}{y^{2}}$.
(1) $\frac{1}{2}$
(2) $\frac{1}{3}$
(3) $\frac{1}{4}$
(4) $\frac{1}{5}$
(5) $\frac{1}{6}$

6 [4 points]
When $17^{x}=16$ and $68^{y}=8$, find $\frac{4}{x}-\frac{3}{y}$.
(1) -2
(2) -1
(3) 0
(4) 1
(5) 2

7 [5 points]
Compute $\sum_{n=1}^{10} \frac{1}{n(n+2)}$.
(1) $\frac{175}{264}$
(2) $\frac{185}{264}$
(3) $\frac{195}{264}$
(4) $\frac{205}{264}$
(5) $\frac{215}{264}$

8 [5 points]
When $A=\left(\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right), B=\left(\begin{array}{ll}3 & 2 \\ 8 & 5\end{array}\right)$ and $A^{-1} B^{-1}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, find $a+b+c+d$.
(1) 1
(2) 3
(3) 5
(4) 7
(5) 9

9 [5 points]
When α, β and γ are the solutions of $x^{3}+2 x-10=0$, find $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}+\frac{1}{\gamma^{2}}$.
(1) $\frac{1}{10}$
(2) $\frac{1}{15}$
(3) $\frac{1}{20}$
(4) $\frac{1}{25}$
(5) $\frac{1}{30}$
10. [5 points]

Compute $\left(\frac{1+\sqrt{3} i}{2}\right)^{2022}$.
(1) i
(2) $-i$
(3) 1
(4) -1
(5) $\frac{1-\sqrt{3} i}{2}$
11. [5 points]

Compute $\cos \frac{7 \pi}{12}$.
(1) $\sqrt{2}-\sqrt{6}$
(2) $\frac{\sqrt{2}-\sqrt{6}}{\sqrt{2}}$
(3) $\frac{\sqrt{2}-\sqrt{6}}{2}$
(4) $\frac{\sqrt{2}-\sqrt{6}}{2 \sqrt{2}}$
(5) $\frac{\sqrt{2}-\sqrt{6}}{4}$
12. [5 points]

When $\sin 2 \theta=\frac{3}{5}$ and $0<\theta<\frac{\pi}{4}$, find $\sin \theta$.
(1) $\frac{1}{\sqrt{2}}$
(2) $\frac{1}{2}$
(3) $\frac{1}{\sqrt{6}}$
(4) $\frac{1}{\sqrt{8}}$
(5) $\frac{1}{\sqrt{10}}$
13. [5 points]

When α and β are the solutions of
$\cos 2 x+3 \sin x+1=0,(0 \leq x \leq 2 \pi)$, find $\alpha+\beta$.
(1) π
(2) 2π
(3) 3π
(4) 4π
(5) 5π
14. [5 points]

Find the sum of all solutions of $4^{x}-2^{x+1}+2^{-x+1}=1$.
(1) $\frac{1}{8}$
(2) $\frac{1}{4}$
(3) $\frac{1}{2}$
(4) 1
(5) 2
15. [6 points]

Find $\lim _{x \rightarrow 0} \frac{2 x^{3}}{(1-\cos x) \sin 3 x}$.
(1) 1
(2) 2
(3) $\frac{3}{2}$
(4) $\frac{4}{3}$
(5) $\frac{5}{4}$

16 [6 points]
Find the minimum value of $f(x)=\frac{1}{4} x^{4}+2 x^{2}-5 x+3$.
(1) $\frac{1}{4}$
(2) $\frac{5}{4}$
(3) $\frac{9}{4}$
(4) $\frac{13}{4}$
(5) $\frac{17}{4}$
17. [6 points]

When $y=a x+b$ is the tangent line to $y=x^{3}-x^{2}+x+1$ at $(1,2)$, find $a+b$.
(1) 2
(2) 4
(3) 6
(4) 8
(5) 10

18 [6 points]
When $f(x)=\frac{2}{\sqrt{x}+1}$, find $f^{\prime}(4)$.
(1) $-\frac{1}{10}$
(2) $-\frac{1}{12}$
(3) $-\frac{1}{14}$
(4) $-\frac{1}{16}$
(5) $-\frac{1}{18}$
19. [6 points]

Find $\int_{0}^{1}(2 x+1)^{10} d x$.
(1) $\frac{1}{22}\left(3^{11}-1\right)$
(2) $\frac{1}{33}\left(3^{11}-1\right)$
(3) $\frac{1}{44}\left(3^{11}-1\right)$
(4) $\frac{1}{55}\left(3^{11}-1\right)$
(5) $\frac{1}{66}\left(3^{11}-1\right)$
20. [6 points]

Find the area of the region enclosed by two curves $y=x^{2}$ and $y=-x+2$.
(1) $\frac{1}{2}$
(2) $\frac{3}{2}$
(3) $\frac{5}{2}$
(4) $\frac{7}{2}$
(5) $\frac{9}{2}$

2022 IUT Admission Test (SBL) Answers

Type A

1	2	3	4	5	6	7	8	9	10
(2)	(4)	(2)	(3)	(2)	(1)	(1)	(3)	(4)	(3)
11	12	13	14	15	16	17	18	19	20
(5)	(5)	(3)	(4)	(4)	(1)	(1)	(5)	(1)	(5)

2022 IUT Admission Test(SOCIE, Type A) Math Examination

<Multiple choice Types > There is only one correct answer per each question. Mark your answer choice on the OMR answer sheet.

For each correct answer, you will get the points indicated next to each question number.

O No penalty point is applied to an incorrect answer.

1 [4 points]
When $a=\sqrt{2}+\sqrt{3}$ and $b=\sqrt{2}-\sqrt{3}$, find $a^{3}-b^{3}$.
(1) $12 \sqrt{3}$
(2) $15 \sqrt{3}$
(3) $18 \sqrt{3}$
(4) $21 \sqrt{3}$
(5) $24 \sqrt{3}$

2 [4 points]
When $\frac{3^{t}+3^{-t}}{3^{t}-3^{-t}}=\sqrt{5}$, find $A=9^{t}+9^{-t}$.
(1) 1
(2) 3
(3) 5
(4) 7
(5) 9

3 [4 points]
When $2^{a}=4^{b}$ and $\frac{a}{b}=\log _{3} c$, find c.
(1) $\frac{1}{9}$
(2) $\frac{1}{3}$
(3) 1
(4) 3
(5) 9

4 [4 points]
When $A=\left(\begin{array}{ll}2 & 1 \\ 3 & 1\end{array}\right), \quad B=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ and $A B A^{-1}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, find $a+b+c+d$.
(1) -2
(2) -1
(3) 0
(4) 1
(5) 2

5 [5 points]
Compute $\left(\frac{1+\sqrt{3} i}{1+i}\right)^{12}$.
(1) $64 i$
(2) $-64 i$
(3) 64
(4) -64
(5) $64 \sqrt{3}$

6 [5 points]
When α and β are the solutions of $\frac{2}{\log _{2} x+3}=\log _{4} x$, find $\alpha \beta$.
(1) $\frac{1}{2}$
(2) $\frac{1}{4}$
(3) $\frac{1}{6}$
(4) $\frac{1}{8}$
(5) $\frac{1}{10}$
7. [5 points]

When $\cos \alpha+\cos \beta=\frac{4}{3}$ and $\sin \alpha+\sin \beta=\frac{2}{3}$, find $\cos (\alpha-\beta)$.
(1) $\frac{1}{9}$
(2) $\frac{2}{9}$
(3) $\frac{1}{3}$
(4) $\frac{4}{9}$
(5) $\frac{5}{9}$

8 [5 points]
Compute $\lim _{x \rightarrow 0} \frac{(1-\cos 2 x) \operatorname{tg}\left(x^{2}\right)}{4 x^{4}}$, where $\operatorname{tg}(x)=\frac{\sin x}{\cos x}$.
(1) $\frac{1}{4}$
(2) $\frac{1}{2}$
(3) 0
(4) 2
(5) 4
9. [5 points]

When M and m are the maximum and minimum values of $f(x)=x^{4}+4 x+1$, $(-2 \leq x \leq 2)$, find $M+m$.
(1) 21
(2) 23
(3) 25
(4) 27
(5) 29

10 [5 points]

When $f(x)=\frac{\sqrt[3]{x}-1}{\sqrt[3]{x}+1}$, find $f^{\prime}(8)$.
(1) $\frac{1}{38}$
(2) $\frac{1}{42}$
(3) $\frac{1}{46}$
(4) $\frac{1}{50}$
(5) $\frac{1}{54}$
11. [6 points]

Compute $\int_{0}^{\frac{\pi}{2}} \sin (2 x) \cos (\cos x) d x$.
(1) $2 \sin 1$
(2) $2 \cos 1$
(3) $2(\sin 1-1)$
(4) $2(\cos 1-1)$
(5) $2(\sin 1+\cos 1-1)$
12. [6 points]

Compute $\int_{0}^{1} x(1-x)^{100} d x$.
(1) $\frac{1}{99 \times 100}$
(2) $\frac{1}{100 \times 101}$
(3) $\frac{1}{101 \times 102}$
(4) $\frac{1}{102 \times 103}$
(5) $\frac{1}{103 \times 104}$
13. [6 points]

Find the area of the region enclosed by $y=x^{4}-x$ and $y=x-x^{2}$.
(1) $\frac{1}{15}$
(2) $\frac{1}{5}$
(3) $\frac{1}{3}$
(4) $\frac{7}{15}$
(5) $\frac{3}{5}$
14. [6 points]

Find the volume of the solid obtained by rotating the region bounded by
$y=\ln x, \quad(1 \leq x \leq e), x=e$ and the x-axis about the x-axis.
(1) $\pi(e-2)$
(2) $\pi(e-1)$
(3) πe
(4) $\pi(e+1)$
(5) $\pi(e+2)$

Type A

1	2	3	4	5	6	7	8	9	10
(3)	(2)	(5)	(1)	(4)	(4)	(1)	(2)	(2)	(5)
11	12	13	14	15	16	17	18	19	20
(5)	(3)	(4)	(1)						

2022 IUT Admission Test(SOCIE) Physics Examination(A TYPE)

<Multiple choice Types> There is only one correct answer per each question. Mark your answer choice on the OMR answer sheet.

O For each correct answer, you will get the points indicated next to each question number.

O No penalty point is applied to an incorrect answer.

1. [4 points]

As shown in the figure, objects A and B with masses of 1 kg and 2 kg collide head-on with a speed of 3 m / s, respectively, and then move in opposite directions on a frictionless floor. The speed of B after the collision is $1 \mathrm{~m} / \mathrm{s}$. What is the speed of object A after the collision?

before collision
(1) $2 \mathrm{~m} / \mathrm{s}$
(2) $3 \mathrm{~m} / \mathrm{s}$
(4) $5 \mathrm{~m} / \mathrm{s}$
(5) $6 \mathrm{~m} / \mathrm{s}$
2. [6 points]

As shown in the figure, one end of the string of length $l=10 \mathrm{~m}$ is fixed, and an object of mass $m=2 \mathrm{~kg}$ is suspended at the other end to have a uniform circular motion in the horizontal plane. The string makes an angle $\theta=30^{\circ}$ with the vertical line. What is the period of the object in circular motion? (Assume that the gravitational acceleration is $g=10 \mathrm{~m} / \mathrm{s}^{2}$, and air resistance is neglected)

(1) $2 \pi \mathrm{~s}$
(2) $2 \sqrt{3} \pi \mathrm{~s}$
(3) $\sqrt{3} \pi \mathrm{~s}$
(4) $\sqrt{\sqrt{3}} \pi \mathrm{~s}$
(5) $\sqrt{2 \sqrt{3}} \pi \mathrm{~s}$
3. [5 points]

As shown in the figure, the potential difference between the two plates is $V=3 \mathrm{~V}$, and the distance between parallel conductors is $d=2 \mathrm{~cm}$, A particle with a charge of $q=-0.4 \mathrm{C}$ is at rest under gravity and electric force. What is the mass of the particle? (Assume that the gravitational acceleration is $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

(1) 2 kg
(2) 3 kg
(3) 4 kg
(4) 6 kg
(5) 8 kg
4. [4 points]

As shown in the figure, the current I flows upward in the straight wire. When a positively charged particle of $+q$ is incident in the same direction as the current, what is the direction of force that is exerted on this particle?

(1) A
(2) B
(3) C
(4) D (5) out of the page
5. [6 points]

Objects A, B, and C have masses of $3 m, 2 m$, and m, respectively. The three objects are connected with two springs with spring constants k_{1} and k_{2} and placed on a frictionless horizontal surface as shown in the figure. When a force F is applied to object C in the horizontal direction, the three objects move with a constant acceleration, and the stretched lengths of the two springs are the same. What is the ratio of the two spring constants, $\frac{k_{1}}{k_{2}}$? (Here, the mass of the spring is ignored)

(1) $\frac{3}{5}$
(2) $\frac{2}{5}$
(3) $\frac{1}{2}$
(4) $\frac{1}{3}$
(5) $\frac{2}{3}$
6. [5 points]

What is the position and size of the image produced when a 3 -cm-long object is placed 60 cm in front of a concave mirror with a focal length of 20 cm ?
(1) $20 \mathrm{~cm}, 1 \mathrm{~cm}$
(2) $20 \mathrm{~cm}, 2 \mathrm{~cm}$
(3) $30 \mathrm{~cm}, 1.5 \mathrm{~cm}$
(4) $30 \mathrm{~cm}, 2 \mathrm{~cm}$
(5) $30 \mathrm{~cm}, 1 \mathrm{~cm}$

2022 IUT Admission Test(SOCIE)
 Physics Examination(A TYPE) Answers

[^0]Answers: 1. (4), 2. (5), 3. (4), 4. (2), 5. (1), 6. (3)

[^0]: <Multiple choice Types> There is only one correct answer per each question. Mark your answer choice on the OMR answer sheet.

 O For each correct answer, you will get the points indicated next to each question number.

 O No penalty point is applied to an incorrect answer.

