2022 IUT $3^{\text {rd }}$ Admission Test(SBL)
 Math Examination(TYPE A)

<Multiple choice Types > There is only one correct answer for each question. Mark your choice on the OMR answer sheet.
O The points for each question are listed next to the question number.
O You can use the right side of each page for your memo.

1. [4 points]

Compute $\sqrt{6-\sqrt{35}}+\sqrt{6+\sqrt{35}}$.
(1) $\sqrt{2}$
(2) $\sqrt{6}$
(3) $\sqrt{10}$
(4) $\sqrt{14}$
(5) $\sqrt{18}$
2. [4 points]

Compute
$\log _{2} \frac{2}{5}+\log _{2} \frac{5}{16}+\log _{2} 5 \times \log _{7} 8 \times \log _{5} 49$.
(1) 1
(2) 3
(3) 5
(4) 7
(5) 9
3. [4 points]

If a polynomial $P(x)$ is divided by $x-2$, the remainder is 5 . If $P(x)$ is divided by $x+2$, the remainder is 0 . If $P(x)$ is divided by $x^{2}-4$, the remainder is $a x+b$. Find $a^{2}+b^{2}$.
(1) $\frac{105}{16}$
(2) $\frac{125}{16}$
(3) $\frac{145}{16}$
(4) $\frac{165}{16}$
(5) $\frac{185}{16}$
4. [4 points]

When $x+x^{-1}=4$ and $x>1$, find $\frac{x^{3}+x^{-3}-4}{x^{2}-x^{-2}}$.
(1) $\sqrt{2}$
(2) $\sqrt{3}$
(3) $\sqrt{6}$
(4) $2 \sqrt{2}$
(5) $2 \sqrt{3}$
5. [4 points]

When $x^{2}-x+1=0$, find $10 x^{30}+x^{24}-x^{23}+x^{17}$.
(1) 9
(2) 10
(3) 11
(4) 12
(5) 13
6. [5 points]

When $60^{x}=8,3^{y}=4$, and $5^{z}=2$, find $\frac{3}{x}-\frac{2}{y}-\frac{1}{z}$.
(1) 0
(2) 2
(3) 4
(4) 6
(5) 8
7. [5 points]

When $A=\left(\begin{array}{cc}1 & 3 \\ 0 & -1\end{array}\right), B=\left(\begin{array}{cc}-2 & 2 \\ 1 & 1\end{array}\right)$ and $A^{-1} B-B A^{-1}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, find $a+b+c+d$.
(1) 11
(2) 13
(3) 15
(4) 17
(5) 19
8. [5 points]

Find $\sum_{n=1}^{10} \frac{2}{n^{2}+4 n+3}$.
(1) $\frac{15}{52}$
(2) $\frac{20}{52}$
(3) $\frac{25}{52}$
(4) $\frac{30}{52}$
(5) $\frac{35}{52}$
9. [5 points]

When α and β are the solutions of $x^{2}-17 x+4=0$ with $0<\alpha<\beta$, find $\frac{1}{\sqrt{\alpha}}-\frac{1}{\sqrt{\beta}}$.
(1) $\frac{\sqrt{11}}{2}$
(2) $\frac{\sqrt{13}}{2}$
(3) $\frac{\sqrt{15}}{2}$
(4) $\frac{\sqrt{17}}{2}$
(5) $\frac{\sqrt{19}}{2}$
10. [5 points]

Simplify $(\sqrt{2+\sqrt{2}}+i \sqrt{2-\sqrt{2}})^{20}$.
(1) -2^{20}
(2) 2^{20}
(3) $-2^{20} i$
(4) $2^{20} i$
(5) $2^{20}\left(\frac{1+i}{\sqrt{2}}\right)$
11. [5 points]

Compute $\operatorname{tg}\left(\frac{\pi}{12}\right)$, where $\operatorname{tg} \theta=\frac{\sin \theta}{\cos \theta}$.
(1) $4-\sqrt{3}$
(2) $2-\sqrt{3}$
(3) $\sqrt{3}$
(4) $2+\sqrt{3}$
(5) $4+\sqrt{3}$
12. [5 points]

Find the sum of all solutions of

$$
2^{x}-1=\frac{2^{x}-22}{2^{x}-10}
$$

(1) 1
(2) 3
(3) 5
(4) 7
(5) 9
13. [5 points]

When $\sin \theta-\cos \theta=\frac{1}{\sqrt{2}}$, find

$$
\frac{\left(\sin ^{2} \theta-\cos ^{2} \theta\right)^{2}}{\sin ^{3} \theta-\cos ^{3} \theta}
$$

(1) $\frac{\sqrt{2}}{5}$
(2) $\frac{2 \sqrt{2}}{5}$
(3) $\frac{3 \sqrt{2}}{5}$
(4) $\frac{4 \sqrt{2}}{5}$
(5) $\sqrt{2}$
14. [5 points]

Find the sum of all solutions of $6 \sin ^{2} x-3=3 \cos 2 x$ for $0 \leq x \leq 2 \pi$.
(1) π
(2) 2π
(3) 3π
(4) 4π
(5) 5π
15. [5 points]

Find $\lim _{x \rightarrow 0} \frac{x \cos 2 x+2 \sin 3 x}{\sin 2 x-3 x \cos x}$.
(1) -1
(2) -3
(3) -5
(4) -7
(5) -9
16. [6 points]

When $f(x)=\frac{12}{\sqrt[3]{x}+1}$, find $f^{\prime}(8)$.
(1) $-\frac{1}{9}$
(2) $-\frac{2}{9}$
(3) $-\frac{5}{9}$
(4) $-\frac{7}{9}$
(5) $-\frac{8}{9}$
17. [6 points]

Find the minimum value of
$f(x)=x^{4}-2 x^{3}+4 x^{2}-12 x+11$.
(1) $\frac{1}{16}$
(2) $\frac{3}{16}$
(3) $\frac{5}{16}$
(4) $\frac{7}{16}$
(5) $\frac{9}{16}$
18. [6 points]

When $y=a x+b$ is the tangent line to $y=x^{4}-x^{3}-2 x^{2}+5 x+1$ at $(1,4)$, find $a+b$.
(1) -4
(2) -2
(3) 0
(4) 2
(5) 4
19. [6 points]

Compute $\int_{0}^{\frac{\pi}{2}} \cos x(1+\sin x)^{4} d x$.
(1) $\frac{31}{5}$
(2) $\frac{33}{5}$
(3) $\frac{36}{5}$
(4) $\frac{37}{5}$
(5) $\frac{39}{5}$

20. [6 points]

Find the area of the region enclosed by two curves $y=x^{3}+2 x^{2}-x+5$ and $y=x^{3}+x^{2}-3 x+8$.
(1) $\frac{32}{3}$
(2) $\frac{34}{3}$
(3) $\frac{35}{3}$
(4) $\frac{37}{3}$
(5) $\frac{38}{3}$

2022 IUT $3^{\text {rd }}$ SBL Answer Sheets

Type A

1	2	3	4	5	6	7	8	9	10
(4)	(2)	(2)	(5)	(3)	(2)	(1)	$(5$	(2)	(4)
11	12	13	14	15	16	17	18	19	20
(2)	(3)	(3)	(4)	(4)	(1)	$(3$	$(5$	(1)	(1)

2022 IUT $3^{\text {rd }}$ Admission Test(SOCIE)
 Math Examination(TYPE A)

<Multiple choice Types > There is only one correct answer for each question. Mark your choice on the OMR answer sheet.
O The points for each question are listed next to the question number.
O You can use the right side of each page for your memo.

1. [4 points]

Simplify $\sqrt[3]{\sqrt{8} \times \frac{\sqrt[4]{2}}{\sqrt[3]{4}}}$.
(1) $2^{\frac{13}{36}}$
(2) $2^{\frac{17}{36}}$
(3) $2^{\frac{19}{36}}$
(4) $2^{\frac{23}{36}}$
(5) $2^{\frac{25}{36}}$
2. [4 points]

Simplify $\left(\frac{\sqrt{3}+i}{1+i}\right)^{30}$.
(1) 2^{15}
(2) -2^{15}
(3) $-2^{15} i$
(4) $2^{15}\left(\frac{1+i}{\sqrt{2}}\right)$
(5) $2^{15}\left(\frac{1-i}{\sqrt{2}}\right)$
3. [4 points]

When $2^{a}=3^{b}=5^{c}>1$, find $\frac{c}{a}+\frac{2 c}{b}$.
(1) $\log _{5} 4$
(2) $\log _{5} 6$
(3) $\log _{5} 9$
(4) $\log _{5} 12$
(5) $\log _{5} 18$
4. [4 points]

Simplify $\operatorname{tg} \frac{3 \pi}{10} \times \operatorname{tg} \frac{4 \pi}{5}$, where $\operatorname{tg} \theta=\frac{\sin \theta}{\cos \theta}$.
(1) -1
(2) $-\frac{\sqrt{3}}{3}$
(3) $\frac{\sqrt{3}}{3}$
(4) 1
(5) $\sqrt{3}$
5. [5 points]

When $A=\left(\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right)$ and $A^{2}+3 A^{-1}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, find $a+b+c+d$.
(1) 5
(2) 6
(3) 7
(4) 8
(5) 9
6. [5 points]

Find the sum of all solutions of

$$
2 \sin ^{2} x+3 \cos x=0,0 \leq x<2 \pi
$$

(1) π
(2) $\frac{4 \pi}{3}$
(3) $\frac{5 \pi}{3}$
(4) 2π
(5) $\frac{7 \pi}{3}$
7. [5 points]

Compute $\lim _{n \rightarrow \infty} \frac{1}{n^{5}} \sum_{k=n+1}^{2 n} k^{4}$
(1) $\frac{23}{5}$
(2) 5
(3) $\frac{27}{5}$
(4) $\frac{29}{5}$
(5) $\frac{31}{5}$
8. [5 points]

When $\lim _{x \rightarrow 0} \frac{\sin (2 x)}{e^{x}+a}=b$ for some constants a and b, find $a+b$.
(1) 1
(2) 2
(3) 3
(4) 4
(5) 5
9. [5 points]

Find the maximum value of

$$
f(x)=\frac{x}{x^{2}+x+1}
$$

(1) 1
(2) $\frac{1}{2}$
(3) $\frac{1}{3}$
(4) $\frac{1}{4}$
(5) $\frac{1}{5}$
10. [5 points]

When $f(x)=2^{\sin x}$, find $f^{\prime}(\pi)$.
(1) $-e \ln 2$
(2) $-\ln 2$
(3) 0
(4) $\ln 2$
(5) $e \ln 2$
11. [6 points]

When the equation $e^{x}=k x$ has only one solution, find the positive constant k.
(1) e^{-2}
(2) e^{-1}
(3) 1
(4) e
(5) e^{2}
12. [6 points]

Compute $\int_{0}^{\pi} \sin ^{2} x \cos ^{2} x d x$.
(1) $\frac{\pi}{2}$
(2) $\frac{\pi}{4}$
(3) $\frac{\pi}{8}$
(4) $\frac{\pi}{16}$
(5) $\frac{\pi}{32}$
13. [6 points]

Find the area of the region enclosed by two curves $y=x^{3}+2 x^{2}+x-5$ and $y=x^{3}+x^{2}-3$.
(1) $\frac{1}{2}$
(2) $\frac{3}{2}$
(3) $\frac{5}{2}$
(4) $\frac{7}{2}$
(5) $\frac{9}{2}$

14. [6 points]

Let A be the region enclosed by $y=x^{2}+1$ and $y=x+3$. Find the volume of the solid obtained by rotating the region A about the x-axis.
(1) $\frac{111 \pi}{5}$
(2) $\frac{113 \pi}{5}$
(3) 23π
(4) $\frac{117 \pi}{5}$
(5) $\frac{119 \pi}{5}$

2022 IUT $3^{\text {rd }}$ SOCIE Answer Sheets

Type A

1	2	3	4	5	6	7
(1)	(3)	(5)	(1)	(2)	(4)	(5)
8	9	10	11	12	13	14
(1)	(3)	(2)	(4)	(3)	(5)	(4)

2022 IUT Admission Test(SOCIE)
 Physics Examination(A TYPE)

<Multiple choice Types> There is only one correct answer per each question. Mark your answer choice on the OMR answer sheet.
O For each correct answer, you will get the points indicated next to each question number.
O No penalty point is applied to an incorrect answer.

1. [6 points]

The speed of a car moving in a straight line with constant acceleration is changed from $10 \mathrm{~m} / \mathrm{s}$ at point A to $20 \mathrm{~m} / \mathrm{s}$ at point C as shown in the figure. What is the speed of the car at point B ?

(1) $5 \sqrt{5} \mathrm{~m} / \mathrm{s}$
(2) $10 \sqrt{2} \mathrm{~m} / \mathrm{s}$
(3) $5 \sqrt{10} \mathrm{~m} / \mathrm{s}$
(4) $15 \mathrm{~m} / \mathrm{s}$
(5) $16 \mathrm{~m} / \mathrm{s}$
2. [5 points]

As shown in the figure below, a person of mass $m=60 \mathrm{~kg}$ is initially at rest in a stationary train of mass $M=1000 \mathrm{~kg}$. If this person suddenly moves to the front of the train at speed $v=5 \mathrm{~m} / \mathrm{s}$, what will be the speed of the train? (Here, the speed v of the person is the speed measured by a stationary observer outside the train and it is assumed that there is no friction in the train wheels.)

(1) $0.2 \mathrm{~m} / \mathrm{s}$
(2) $0.3 \mathrm{~m} / \mathrm{s}$
(3) $0.4 \mathrm{~m} / \mathrm{s}$
(4) $0.5 \mathrm{~m} / \mathrm{s}$
(5) $0.6 \mathrm{~m} / \mathrm{s}$
3. [4 points]

As shown in the graph below, the state of a certain amount of ideal gas changes from state A to state B. If the temperature of the gas in state A is 320 K , what is the temperature of the gas in state B ?

(1) 40 K
(2) 80 K
(3) 160 K
(4) 320 K
(5) 640 K
4. [6 points]

In the circuit where the resistors and a capacitor are connected as shown in the figure, what is the amount of charge charged in the capacitor of $3 \mu \mathrm{~F}$?

(1) $2 \mu \mathrm{C}$
(2) $3 \mu \mathrm{C}$
(3) $6 \mu \mathrm{C}$
(4) $9 \mu \mathrm{C}$
(5) $18 \mu \mathrm{C}$
5. [4 points]

As shown in the figure, there is a long conducting rod placed parallel to the x-axis direction above the $x y$ plane, and current flows in the $+x$-axis direction in the rod. When a compass is placed at the origin, in which direction does the N pole of the compass point?

(1) $+x$
(2) $-x$
(3) $+y$
(4) $-y$
(5) $+z$
6. [5 points]

If a concave lens with a focal length of 10 cm produces an image of which the size is $\frac{1}{3}$ of that of the object, what is the distance from the lens to the object?
(1) 20 cm
(2) 25 cm
(3) 30 cm
(4) 40 cm
(5) 60 cm

2022 IUT Admission Test(SOCIE)
 Physics Examination(A TYPE) Answers

[^0]Answers:

1. (3)
2. (2)
3. (4)
4. (5)
5. (3)
6. (1)

[^0]: <Multiple choice Types> There is only one correct answer per each question. Mark your answer choice on the OMR answer sheet.

 O For each correct answer, you will get the points indicated next to each question number.

 O No penalty point is applied to an incorrect answer.

