2022 IUT $2^{\text {nd }}$ Admission Test(SBL Pre-University) Math Examination(TYPE A)

<Multiple choice Types > There is only one correct answer for each question. Mark your choice on the OMR answer sheet.

O The points for each question are listed next to the question number.
O You can use the right side of each page for your memo.

1. [4 points]

Compute $\sqrt{8+2 \sqrt{15}}-\sqrt{8-2 \sqrt{15}}$.
(1) $\sqrt{3}$
(2) $2 \sqrt{3}$
(3) $3 \sqrt{3}$
(4) $4 \sqrt{3}$
(5) $5 \sqrt{3}$
2. [4 points]

When $\sqrt{a}-\frac{1}{\sqrt{a}}=2$, find $a^{2}+\frac{1}{a^{2}}$.
(1) 30
(2) 32
(3) 34
(4) 36
(5) 38
3. [4 points]

For $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right)$ and $B=\left(\begin{array}{rr}-2 & 3 \\ 5 & 1\end{array}\right)$, let
$A^{-1} B A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Find $a+b+c+d$.
(1) 11
(2) 13
(3) 15
(4) 17
(5) 19
4. [4 points]

When α, β, γ are the solutions of $3 x^{3}+2 x^{2}-4 x+1=0$, find $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$.
(1) -4
(2) -2
(3) 0
(4) 2
(5) 4
5. [4 points]

Compute $\sin \frac{11 \pi}{12}$.
(1) $\frac{\sqrt{6}-\sqrt{5}}{4}$
(2) $\frac{\sqrt{6}-\sqrt{3}}{4}$
(3) $\frac{\sqrt{6}-\sqrt{2}}{4}$
(4) $\frac{\sqrt{6}-1}{4}$
(5) $\frac{\sqrt{6}-2}{4}$
6. [5 points]

When $2^{x}=\sqrt{3}, 9^{y}=5$ and $25^{z}=8$, find $x y z$.
(1) $\frac{1}{8}$
(2) $\frac{3}{8}$
(3) $\frac{5}{8}$
(4) $\frac{7}{8}$
(5) $\frac{9}{8}$
7. [5 points]

Find the sum of all solutions of $\cos 2 x-4 \cos x-2 \sin ^{2} x=0$ for $0<x<2 \pi$.
(1) $\frac{\pi}{2}$
(2) π
(3) $\frac{5 \pi}{4}$
(4) $\frac{3 \pi}{2}$
(5) 2π
8. [5 points]

When $\omega=\frac{-1+\sqrt{3} i}{2}$, find $\sum_{k=1}^{100} \omega^{k}$.
(1) 0
(2) 1
(3) i
(4) $\frac{-1+\sqrt{3} i}{2}$
(5) $\frac{\sqrt{3}+i}{4}$
9. [5 points]

When $\operatorname{tg} \theta=2$ for $0<\theta<\frac{\pi}{2}$, find $\sin 2 \theta+\cos 2 \theta$, where $\operatorname{tg} \theta=\frac{\sin \theta}{\cos \theta}$.
(1) 0
(2) $\frac{1}{5}$
(3) $\frac{3}{5}$
(4) 1
(5) $\frac{7}{5}$

10. [5 points]

Find the sum of all integer solutions of $x^{2}-2 x+8<7 x-4$.
(1) 15
(2) 18
(3) 21
(4) 24
(5) 27
11. [5 points]

Find the minimum value of the function $f(x)=|x+3|+|2 x-1|$.
(1) $\frac{1}{2}$
(2) $\frac{3}{2}$
(3) $\frac{5}{2}$
(4) $\frac{7}{2}$
(5) $\frac{9}{2}$
12. [5 points]

Find $\lim _{x \rightarrow \infty} x\left(\sqrt{x^{2}+2}-\sqrt{x^{2}-2}\right)$.
(1) 1
(2) 2
(3) 4
(4) $\frac{1}{2}$
(5) $\frac{1}{4}$
13. [5 points]

Find the sum of all solutions of

$$
3^{2 x}-3^{x+1}+3^{-x+4}=27
$$

(1) $\frac{1}{2}$
(2) $\frac{3}{2}$
(3) $\frac{5}{2}$
(4) $\frac{7}{2}$
(5) $\frac{9}{2}$
14. [5 points]

Find the sum of all solutions of $\sin x-\cos x=\frac{\sqrt{6}}{2}$ for $0<x<2 \pi$.
(1) π
(2) $\frac{5 \pi}{4}$
(3) $\frac{3 \pi}{2}$
(4) $\frac{7 \pi}{4}$
(5) 2π
15. [5 points]

Let M and m be the maximum and minimum values of $f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-2 x+2$ ($0 \leq x \leq 2$). Find $M+m$.
(1) $\frac{1}{2}$
(2) $\frac{3}{2}$
(3) $\frac{5}{2}$
(4) $\frac{7}{2}$
(5) $\frac{9}{2}$
16. [6 points]

Find $\lim _{x \rightarrow 0} \frac{\sin ^{3} 2 x}{x^{2} \operatorname{tg} x}$, where $\operatorname{tg} x=\frac{\sin x}{\cos x}$.
(1) 2
(2) 4
(3) 8
(4) 12
(5) 16
17. [6 points]

When $f(x)=\frac{\sqrt[4]{7 x+2}}{\sqrt{x+2}}$, find $f^{\prime}(2)$
(1) $-\frac{1}{64}$
(2) $-\frac{1}{56}$
(3) $-\frac{1}{48}$
(4) $-\frac{1}{40}$
(5) $-\frac{1}{32}$
18. [6 points]

Let $y=a x+b$ be the tangent line to $y=\frac{3 x^{2}+2}{2 x-1} \quad$ at $x=1$. Find $a^{2}+b^{2}$.
(1) 85
(2) 88
(3) 91
(4) 94
(5) 97
19. [6 points]

Find $\int_{0}^{2} 9 x^{2} \sqrt{2 x^{3}+1} d x$.
(1) $17 \sqrt{17}-1$
(2) $17 \sqrt{17}-3$
(3) $17 \sqrt{17}-5$
(4) $17 \sqrt{17}-7$
(5) $17 \sqrt{17}-9$
20. [6 points]

Find the area of the region enclosed by two curves $y=x^{2}-x+5$ and $y=2 x^{2}+x+2$.
(1) $\frac{23}{3}$
(2) $\frac{26}{3}$
(3) $\frac{29}{3}$
(4) $\frac{32}{3}$
(5) $\frac{35}{3}$

2022 IUT 2 ${ }^{\text {nd }}$ Admission Test(SBL Pre-University) Answer Sheet

Type A

1	2	3	4	5	6	7	8	9	10
(2)	(3)	(1)	(5)	(3)	(2)	$(5$	(4)	(2)	(5)
11	12	13	14	15	16	17	18	19	20
(4)	(2)	(3)	(3)	(4)	$(3$	(1)	(5)	(1)	(4)

2022 IUT Admission Test (SOCIE, Pre-University) Math Examination (A TYPE)

<Multiple choice Types> There is only one correct answer per each question. Mark your answer choice on the OMR answer sheet.

O For each correct answer, you will get the points indicated next to each question number.
O No penalty point is applied to an incorrect answer.

1. [8 points]

Simplify $\left(\frac{1-i}{1+i}\right)^{30}$.
(1) -1
(2) $-i$
(3) $1+i$
(4) 1
(5) i
2. [8 points]

When α, β, γ are solutions of
$x^{3}-4 x^{2}-x+3=0$, find $\frac{\alpha}{\beta \gamma}+\frac{\beta}{\alpha \gamma}+\frac{\gamma}{\alpha \beta}$.
(1) -2
(2) -4
(3) -6
(4) -8
(5) -10
3. [8 points]

Simplify $\left(\log _{4} 9+\log _{8} 3\right) \times \log _{9} 16$.
(1) $\frac{2}{3}$
(2) $\frac{4}{3}$
(3) 2
(4) $\frac{8}{3}$
(5)
$\frac{10}{3}$
4. [10 points]

Find the sum of all integer solutions of

$$
\frac{\left(x^{2}-9\right)(x-5)(x-7)}{x^{2}-1}<0 .
$$

(1) 0
(2) 2
(3) 4
(4) 6
(5) 8
5. [10 points]

When $\sin A=\frac{\sqrt{5}}{5}$ and $\sin B=\frac{\sqrt{10}}{10}$ for $0<A<\pi / 2,0<B<\pi / 2$, find $A+B$.
(1) $\frac{\pi}{2}$
(2) $\frac{\pi}{3}$
(3) $\frac{\pi}{4}$
(4) $\frac{\pi}{5}$
(5) $\frac{\pi}{6}$
6. [10 points]

Evaluate $\int_{0}^{1} \frac{x}{\sqrt{x+1}} d x$.
(1) $\frac{2-\sqrt{2}}{3}$
(2) $\frac{3-2 \sqrt{2}}{3}$
(3) $\frac{4-\sqrt{2}}{3}$
(4) $\frac{3-\sqrt{2}}{3}$
(5) $\frac{4-2 \sqrt{2}}{3}$
7. [10 points]

When $\lim _{x \rightarrow 1} \frac{x^{10}+a x+b}{x^{2}-1}=2$
for real numbers a, b, find $a-b$.
(1) -3
(2) -5
(3) -7
(4) -9
(5) -11
8. [12 points]

When a continuous function $f(x)$ satisfies

$$
\int_{0}^{x}(x-t) f(t) d t=e^{2 x}+a x+b
$$

for real numbers a, b, find $f(0)+a+b$.
(1) 0
(2) 1
(3) 2
(4) 3
(5) 4
9. [12 points]

When a tangent line to the graph of $y=x e^{x}$ passes through $(-4,0)$ and $(0, k)$, find k.
(1) $-e^{-1}$
(2) $-2 e^{-1}$
(3) $-2 e^{-2}$
(4) $-4 e^{-2}$
(5) $-8 e^{-2}$
10. [12 points]

Find the volume of the solid obtained by revolving the region bounded by the curves $y=x^{2}, y=\sqrt{x}$ about x-axis.
(1) $\frac{\pi}{10}$
(2) $\frac{3 \pi}{10}$
(3) $\frac{\pi}{2}$
(4) $\frac{7 \pi}{10}$
(5) $\frac{9 \pi}{10}$

Answers (SOCIE, Pre-University)
Type A

1	2	3	4	5	6	7	8	9	10
(1)	(3)	(4)	(4)	(3)	(5)	(5)	(2)	(4)	(2)

2022 IUT Admission Test(SOCIE)
 Physics Examination(A TYPE)

> <Multiple choice Types> There is only one correct answer per each question. Mark your answer choice on the OMR answer sheet.

O For each correct answer, you will get the points indicated next to each question number.

O No penalty point is applied to an incorrect answer.

1. [10 point]

Two trains initially at rest leave the station at the same time. Train A is running in straight line with an acceleration of $a_{A}=2 \mathrm{~m} / \mathrm{s}^{2}$ and train B in the opposite direction to A with an acceleration of $a_{B}=1 \mathrm{~m} / \mathrm{s}^{2}$. What is the relative speed of train B with respect to train $\mathrm{A}, 10$ seconds after departure?
(1) $10 \mathrm{~m} / \mathrm{s}$
(2) $20 \mathrm{~m} / \mathrm{s}$
(3) $30 \mathrm{~m} / \mathrm{s}$
(4) $40 \mathrm{~m} / \mathrm{s}$
(5) $50 \mathrm{~m} / \mathrm{s}$
2. [12 point]

As shown in the figure below, a spring with a spring constant $k=40 \mathrm{~N} / \mathrm{m}$ fixed to the wall is compressed by 0.1 m by object A with a mass $m=0.1 \mathrm{~kg}$ on a horizontal frictionless plane. When the spring is released, object A is pushed out and collides with stationary object B with the same mass m, and then goes up the slope together as one body. What is the maximum height to which objects A and B can rise? (Assume that the magnitude of gravitational acceleration is $10 \mathrm{~m} / \mathrm{s}^{2}$)

(1) 1 cm
(2) 2 cm
(3) 2.5 cm
(4) 4 cm
(5) 5 cm
3. [8 point]

When a certain amount of the ideal gas was slowly heated, the pressure and volume changed as shown in the graph below. If the temperature of the gas in state A is 100 K , what is the temperature of the gas in state B?

(1) 200 K
(2) 300 K
(3) 400 K
(4) 600 K
(5) 800 K
4. [8 points]

What is the final velocity of a charged particle of mass m and charge q initially at rest when it is accelerated by a potential difference of V ?
(1) $\sqrt{\frac{2 q V}{m}}$
(2) $\sqrt{\frac{q V}{2 m}}$
(3) $\sqrt{2 m q V}$
(4) $\sqrt{\frac{m V}{2 q}}$
(5) $\sqrt{\frac{2 m V}{q}}$
5. [12 points]

As shown in the figure, capacitors of $1 \mu \mathrm{~F}, 2 \mu \mathrm{~F}$, and $3 \mu \mathrm{~F}$ are connected to a power source with a voltage of 6 V . How much electric energy is stored in the capacitor of $3 \mu \mathrm{~F}$?

(1) $12.0 \mu \mathrm{~J}$
(2) $12.5 \mu \mathrm{~J}$
(3) $13.0 \mu \mathrm{~J}$
(4) $13.5 \mu \mathrm{~J}$
(5) $14.0 \mu \mathrm{~J}$
6. [12 point]

Following figure shows a rod of length L that is forced to move at a constant speed v along horizontal rails. The rod and rails form a conducting loop. Assume that the rod has resistance R; the rest of the loop has no resistance. Between the rails, there is a uniform magnetic field of magnitude B. What is the magnitude of force required to pull the rod at a constant speed v ?

(1) $\frac{B^{2} L v}{R}$
(2) $\frac{B^{2} L^{2} v}{R}$
(3) $\frac{B L v^{2}}{R}$
(4) $\frac{B L^{2} v^{2}}{R}$
(5) $\frac{B L v^{2}}{R^{2}}$
7. [10 points]

The wave function of a transverse wave traveling along a string is as follows.
$y(x, t)=(0.5 \mathrm{~m}) \sin [(6.0 \mathrm{rad} / \mathrm{m}) x-(3.0 \mathrm{rad} / \mathrm{s}) t]$
What is the speed of this wave?
(1) $0.1 \mathrm{~m} / \mathrm{s}$
(2) $0.2 \mathrm{~m} / \mathrm{s}$
(3) $0.3 \mathrm{~m} / \mathrm{s}$
(4) $0.4 \mathrm{~m} / \mathrm{s}$
(5) $0.5 \mathrm{~m} / \mathrm{s}$
8. [10 point]

A person is standing on a straight line perpendicular to the flat mirror. What is the speed of the person's image when the person and the mirror are approaching each other with speed of v and u, respectively?

(1) $v+2 u$
(2) $v+u$
(3) $2 v+u$
(4) $2 v+2 u$
(5) $2 v-u$
9. [8 points]

What is the momentum of a photon of frequency f ? (Here, Planck constant is h, and the speed of light in vacuum is c)
(1) $h f$
(2) $f c$
(3) $h f c$
(4) $\frac{f c}{h}$
(5) $\frac{h f}{c}$
10. [10 points]

As shown in the figure, the magnetic field B is in the y-axis direction and the electric field E is in the $-z$-axis direction. An electron with an electric charge e is moving in a straight line along the x-axis. What is the speed of this electron?

(1) $\frac{e B}{E}$
(2) $\frac{E}{B}$
(3) $E B$
(4) $\frac{B}{E}$
(5) $\frac{e E}{B}$

2020 IUT Admission Test(pre SOCIE) Physics Examination(A TYPE)

Answers

1. (3)
2. (5)
3. (3)
4. (1)
5. (4)
6. (2)
7. (5)
8. (1)
9. (5)
10. (2)
