IUT 1st Admission Test(SBL) Math Examination(TYPE A)

4. [3 points] < Multiple choice Types > There is only one correct answer for each question. Mark your choice on the OMR answer When $t - \frac{1}{t} = 2\sqrt{3}$ and t > 0, find $t^3 + \frac{1}{t^3}$. sheet. \odot The points for each question are listed next to the question number. ○ You can use the right side of each page for your memo. 1. [3 points] Find $(1+\sqrt{2})^4 + (1-\sqrt{2})^4$. ① 30 (2) 32 ③ 34 ④ 36 (5) 38 5. [3 points] Find $\sum_{n=1}^{10} \frac{1}{n^2 + 4n + 3}$. $(1) \ \frac{31}{104} \ (2) \ \frac{33}{104} \ (3) \ \frac{35}{104} \ (4) \ \frac{37}{104} \ (5) \ \frac{39}{104}$ 2. [3 points] When a+b+c=1, $a^2+b^2+c^2=5$ and $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 3$, find *abc*. 6. [3 points] (1) $\frac{2}{3}$ (2) $\frac{4}{3}$ (3) 0 (4) $-\frac{2}{3}$ (5) $-\frac{4}{3}$ When (a_1, b_1) and (a_2, b_2) are solutions of $\begin{cases} x^2 + y^2 = 2\\ 2x + y = 1 \end{cases},$ find $a_1 + b_1 + a_2 + b_2$ $(1) -\frac{4}{5} \quad (2) -\frac{2}{5} \quad (3) \quad 0 \quad (4) \quad \frac{3}{5} \quad (5) \quad \frac{6}{5}$ 3. [3 points] When α and β are the solutions of $x^2 + 5x + 2 = 0$, find $\alpha^3 + \alpha\beta + \beta^3$. (1) - 91 (2) - 93 (3) - 95 (4) - 97 (5) - 997 [3 points] Simplify $\log_3(\sqrt{2} + \sqrt{8} + \sqrt{9}) + \log_3(\sqrt{2} + \sqrt{8} - \sqrt{9}).$ (1) 2 (2) 3 (3) $\sqrt{2}$ (4) $\sqrt{3}$ (5) $\sqrt{2} + \sqrt{3}$

Find the sum of all solutions of $4^x - 5 \cdot 2^x + 2 = -8 \cdot 2^{-x}$.

$$1 1 2 3 3 5 4 7 5 9$$

9. [3 points]

Simplify
$$(3^{\log_{\sqrt{3}^8}}) - (\frac{1}{2})^{\log_4(\frac{1}{81})}$$
.
(1) 51 (2) 53 (3) 55 (4) 57 (5) 59

12. [3 points]

Compute $tg \frac{\pi}{8}$, where $tg\theta = \frac{\sin\theta}{\cos\theta}$.

13. [3 points] Find the sum of all solutions of $3\cos 2x + 2\cos x - 1 = 0$, $(0 \le x \le 2\pi)$.

(1)
$$\pi$$
 (2) $\frac{3}{2}\pi$ (3) 2π (4) $\frac{5}{2}\pi$ (5) 3π

14. [3 points] Find the sum of all solutions of $\sqrt{3}\sin x - \cos x = \sqrt{3}$, $(0 \le x \le 2\pi)$.

15. [3 points]
When
$$A = \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$, and
 $A^{-1}B^2 = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, find $a + b + c + d$.
(1) -6 (2) -3 (3) 0 (4) 3 (5) 6

When $2^{x} = \frac{1}{\sqrt{3}}$ and $4^{y} = 27$, find $\frac{y}{x}$. (1) -1 (2) -3 (3) -5 (4) -7 (5) -9

When $a = \sqrt{3} + i$ and $b = \sqrt{3} - i$, find $\frac{a^3 - b^3}{ab}$. (1) 2i (2) 4i (3) 6i (4) 8i (5) 10i

16. [3 points]
When
$$A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$
 and $A^{100} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$,
find $a + b + c + d$.
(1) 202 (2) 204 (3) 206 (4) 208 (5) 210

Find
$$\lim_{x \to 0} \frac{x^3 + 2\sin x (1 - \cos x)}{x (1 - \cos x)}.$$

(1) 2 (2) 4 (3) 6 (4) 8 (5) 10

20. [3 points] Let M and m be the maximum and minimum values of $f(x) = \frac{1}{3}x^3 + x^2 - 3x + 1$, $(-3 \le x \le 3)$, respectively. Find M + m.

$$(1) \frac{20}{3} \quad (2) \frac{22}{3} \quad (3) 8 \quad (4) \frac{26}{3} \quad (5) \frac{28}{3}$$

21. [4 points]

Find the minimum value of $f(x) = 3\sin^2 x - 4\sin x \cos x + 2$.

 $(1) - 2 \qquad (2) - 1 \qquad (3) 0 \qquad (4) 1 \qquad (5) 2$

18. [3 points]
Find
$$\lim_{x \to \infty} (\sqrt{x^3 + 3} - \sqrt{x^3 + 3x\sqrt{x} + 4})$$
.
(1) $-\frac{1}{2}$ (2) -1 (3) $-\frac{3}{2}$ (4) -2 (5) $-\frac{5}{2}$

22.^[4 points]

When
$$\omega = \frac{1 - \sqrt{3}i}{2}$$
, find $\sum_{n=0}^{14} \omega^n$.

When y = ax + b is the tangent line to $f(x) = \frac{\sqrt{x+4}}{2x+1}$ at x = 0, find a + b. (1) $-\frac{1}{4}$ (2) $-\frac{3}{4}$ (3) $-\frac{5}{4}$ (4) $-\frac{7}{4}$ (5) $-\frac{9}{4}$

23. [4 points]
When
$$f(x) = \sqrt[3]{(3x+2)^4 - 8}$$
, find $f'(0)$.
(1) 2 (2) 4 (3) 6 (4) 8 (5) 10

24. ^{[4} points]

When a continuous function $f: [0, \infty) \to \mathbb{R}$ satisfies $\int_0^x f(t^2) dt = x \sqrt{2x^2 + 1}$, find f(4).

25. [4 points]

Find the minimum value of $f(x) = x^4 + 2x^3 + 4x^2 - 6x + 2.$ (1) $\frac{1}{16}$ (2) $\frac{3}{16}$ (3) $\frac{5}{16}$ (4) $\frac{7}{16}$ (5) $\frac{9}{16}$

Find
$$\int_{1}^{4} \frac{x^{2} - 2}{\sqrt{x}} dx$$
.
(1) $\frac{42}{5}$ (2) $\frac{44}{5}$ (3) $\frac{46}{5}$ (4) $\frac{48}{5}$ (5) 10

27. [4 points]
Find
$$\int_0^1 \frac{1}{(2x+1)^3} dx$$
.
(1) $\frac{2}{9}$ (2) $\frac{4}{9}$ (3) $\frac{2}{3}$ (4) $\frac{8}{9}$ (5) $\frac{10}{9}$

28. [4 points]
Find
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^2 + 2kn - n^2}{n^3}$$
.
(1) 1 (2) $\frac{1}{2}$ (3) $\frac{1}{3}$ (4) $\frac{1}{4}$ (5) $\frac{1}{5}$

29. [4 points]
When
$$\int_0^1 f(2x) dx = 3$$
 and $\int_0^3 f(x) dx = 18$,
find $\int_2^3 f(x) dx$.
(1) 12 (2) 14 (3) 16 (4) 18 (5) 20

30. [4 points] Find the area of the region enclosed by $y = 3x^3 + 2x^2 + x + 5$ and $y = 3x^3 + x^2 + 4x + 3$.

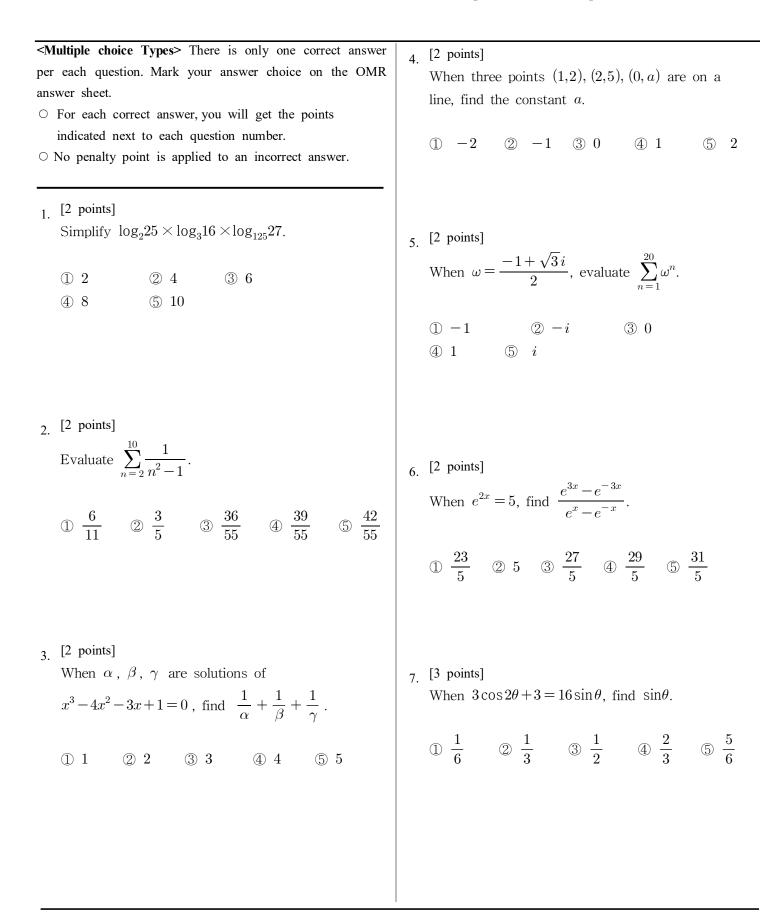
$$(1) \frac{1}{2} \qquad (2) \frac{1}{3} \qquad (3) \frac{1}{4} \qquad (4) \frac{1}{5} \qquad (5) \frac{1}{6}$$

2023 IUT 1st SBL Answer Sheets

Type	А
1,000	4 1

No.	1	2	3	4	5	6	7	8	9	10
Ans.	3	4	2	2	3	5	1	2	3	2
No.	11	12	13	14	15	16	17	18	19	20
Ans.	2	1	5	5	5	1	2	3	4	5
No.	21	22	23	24	25	26	27	28	29	30
Ans.	4	4	4	5	3	1	1	3	1	5

2023 IUT Admission Test (SOCIE) Math Examination (A TYPE)



Find the sum of all integer solutions of

$$x^4 - 5x^3 - x^2 + 5x < 0.$$
(1) 1 (2) 3 (3) 5 (4) 7 (5) 9

9. [3 points]

When a sequence $\{a_n\}_{n=1}^{\infty}$ satisfies

$$\sum_{k=1}^{n} ka_k = n^2 + 3n,$$

find a_{10}

10. [3 points]

When $A = \begin{pmatrix} 1 & 2 \\ -1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 4 \\ 4 & 2 \end{pmatrix}$, find the sum of all entries of $A^{-1}B$.

- 11. [3 points]

When α , β are solutions of $(e^x - 2)(e^x - 4) = 1$, find $\alpha + \beta$. (1) 0 (2) ln3 (3) ln5 (4) ln7 (5) ln9

12. [3 points]
Compute
$$\lim_{x \to 0} \frac{e^x + e^{-x} - 2}{x^2}$$
.
(1) 1 (2) $\frac{3}{2}$ (3) 2 (4) $\frac{5}{2}$ (5) 3

13. [4 points] When $f(x) = x^3 + 3x^2 - 6x + 1$ and $g(x) = f(\sin \pi x + x)$, find g'(1). (1) $-3\pi - 3$ (2) $-3\pi + 3$ (3) 0(4) $3\pi - 3$ (5) $3\pi + 3$

14. [4 points]

When θ is the angle between the z-axis and the plane x+2y+3z=2, find $\cos\theta$.

15. [4 points]

Evaluate
$$\int_0^1 \frac{x}{(x^2+1)^2} dx$$
.
(1) $\frac{1}{8}$ (2) $\frac{1}{4}$ (3) $\frac{3}{8}$ (4) $\frac{1}{2}$ (5) $\frac{5}{8}$

Evaluate
$$\int_{0}^{\pi} x \sin x \, dx$$
.
(1) π (2) $\frac{3}{2}\pi$ (3) 2π (4) $\frac{5}{2}\pi$ (5) 3π

17. [4 points]

When
$$\int_{0}^{1} f(x) dx = 2$$
 and $\int_{0}^{3} f(x) dx = 5$,
find $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(1 + \frac{2k}{n}\right)$.
(1) $\frac{3}{2}$ (2) 2 (3) $\frac{5}{2}$ (4) 3 (5) $\frac{7}{2}$

18. [5 points]

Find the distance between the line y = x + 2 and the curve $y = x - x^2$.

19. [5 points]

Find the area of the triangle with three vertices (1, 2, 3), (1, 1, 1), (2, 2, 1).

20. [5 points]

Find the area between two curves:

$$y = x^{3} + 2x, \ y = x^{2} + 3x - 1.$$
(1) $\frac{1}{3}$ (2) $\frac{2}{3}$ (3) 1
(4) $\frac{4}{3}$ (5) $\frac{5}{3}$

21. [5 points]

When $f(x) = e^{x} + x$ and g is the inverse function of f, find $\int_{1}^{e+1} g(x) dx$.

2023 IUT Admission Test(SOCIE) Answers & solutions

-Type A

1	2	3	4	5	6	7
4	3	3	2	1	5	2
8	9	10	11	12	13	14
5	2	5	4	1	2	3
15	16	17	18	19	20	21
2	1	1	4	3	4	5

-Type B

1	2	3	4	5	6	7
3	4	3	5	2	1	2
8	9	10	11	12	13	14
2	5	1	5	4	2	2
15	16	17	18	19	20	21
3	1	1	4	4	3	5

-Type C

1	2	3	4	5	6	7
1	5	4	3	3	2	4
8	9	10	11	12	13	14
1	2	5	2	5	1	1
15	16	17	18	19	20	21
2	3	2	4	5	4	3

-Type D

1	2	3	4	5	6	7
3	4	2	3	5	1	5
8	9	10	11	12	13	14
2	5	2	1	4	3	2
15	16	17	18	19	20	21
1	2	1	3	4	5	4

Solutions of SOCIE, type A

1.
$$\log_2 25 \times \log_3 16 \times \log_{125} 27 = \frac{2\log 5}{\log 2} \times \frac{4\log 2}{\log 3} \times \frac{3\log 3}{3\log 5} = 8.$$

2.
$$\sum_{n=2}^{10} \frac{1}{n^2 - 1} = \frac{1}{2} \sum_{n=2}^{10} \left(\frac{1}{n-1} - \frac{1}{n+1} \right) = \frac{1}{2} \left(1 + \frac{1}{2} - \frac{1}{10} - \frac{1}{11} \right) = \frac{36}{55}.$$

3.
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \beta\gamma + \gamma\alpha}{\alpha\beta\gamma} = 3.$$

- 4. Since $\frac{5-2}{2-1} = \frac{a-2}{0-1}$, we have a = -1.
- 5. Since $1 + \omega + \omega^2 = 0$, we have $\sum_{n=1}^{20} \omega^n = \omega + \omega^2 = -1$.

6.
$$\frac{e^{3x} - e^{-3x}}{e^x - e^{-x}} = \frac{e^{6x} - 1}{e^{2x}(e^{2x} - 1)} = \frac{5^3 - 1}{5 \times 4} = \frac{31}{5}.$$

7. Since
$$3(1-2\sin^2\theta)+3=16\sin\theta$$
, we get $(3\sin\theta-1)(\sin\theta+3)=0$, hence $\sin\theta=\frac{1}{3}$.

8. Since $x^4 - 5x^3 - x^2 + 5x = x(x-1)(x+1)(x-5) < 0$, we get -1 < x < 0, 1 < x < 5, hence the sum of integer solutions is 9.

9. Since $10a_{10} = 10^2 + 3 \times 10 - (9^2 + 3 \times 9) = 22$, we have $a_{10} = \frac{11}{5}$.

10. $A^{-1}B = \frac{1}{4} \begin{pmatrix} 2 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ 4 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ \frac{3}{2} & \frac{3}{2} \end{pmatrix}.$

Therefore the sum of all the elements of $A^{-1}B$ is 3.

- 11. Since $(e^x 2)(e^x 4) 1 = (e^x e^{\alpha})(e^x e^{\beta})$, we get $e^{\alpha + \beta} = 7$ so that $\alpha + \beta = \ln 7$.
- 12. By L'hospital theorem, we get $\lim_{x \to 0} \frac{e^x + e^{-x} 2}{x^2} = \lim_{x \to 0} \frac{e^x e^{-x}}{2x} = \lim_{x \to 0} \frac{e^x + e^{-x}}{2} = 1.$

13. Since $g'(x) = f'(\sin \pi x + x) \times (\pi \cos \pi x + 1)$, we get $g'(1) = f'(1) \times (-\pi + 1) = -3\pi + 3$.

14. Since
$$\sin\theta = \frac{(1,2,3) \cdot (0,0,1)}{|(1,2,3)| \times |(0,0,1)|} = \frac{3}{\sqrt{14}}$$
, we get $\cos\theta = \sqrt{1 - \left(\frac{3}{\sqrt{14}}\right)^2} = \frac{\sqrt{70}}{14}$.

15.
$$\int_0^1 \frac{x}{(x^2+1)^2} \, dx = \left[-\frac{1}{2(x^2+1)}\right]_0^1 = \frac{1}{4} \, .$$

16. By integration by parts, we get

$$\int_{0}^{\pi} x \sin x \, dx = -x \cos x \Big|_{0}^{\pi} + \int_{0}^{\pi} \cos x \, dx = \pi.$$

17.
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(1 + \frac{2k}{n}\right) = \frac{1}{2} \int_{1}^{3} f(x) dx = \frac{5-2}{2} = \frac{3}{2}.$$

18. Since y = x is tangent to $y = x - x^2$, the distance between $y = x - x^2$ and y = x + 2 is equal to the distance between y = x and y = x + 2. Therefore the distance is $\sqrt{2}$.

19. Let a = (1,2,3) - (1,1,1) = (0,1,2), b = (2,2,1) - (1,1,1) = (1,1,0). Then the area of the triangle is

$$\frac{1}{2}\sqrt{|a|^2|b|^2-(a\cdot b)^2} = \frac{1}{2}\sqrt{5\times 2-1} = \frac{3}{2}.$$

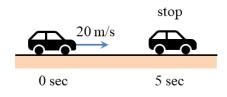
20. Since $x^3 + 2x - (x^2 + 3x - 1) = (x+1)(x-1)^2$, the area between two curves $y = x^3 + 2x$, $y = x^2 + 3x - 1$ is $\int_{-1}^{1} (x+1)(x-1)^2 dx = 2 \int_{0}^{1} (-x^2 + 1) dx = \frac{4}{3}.$ 21. Let t = g(x). Then $\int_{1}^{e+1} g(x) dx = \int_{0}^{1} tf'(t) dt = tf(t) \Big|_{0}^{1} - \int_{0}^{1} f(t) dt = e + 1 - (e - \frac{1}{2}) = \frac{3}{2}.$

2023 IUT Admission Test(SOCIE) Physics Examination(A TYPE)

<Multiple choice Types> There is only one correct answer per each question. Mark your answer choice on the OMR answer sheet.

- For each correct answer, you will get the points indicated next to each question number.
- \odot No penalty point is applied to an incorrect answer.
- 1. [3 points]

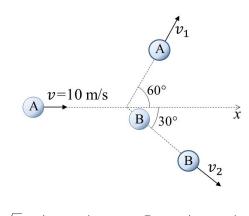
As shown in the figure below, a car running at a speed of 20 m/s in the east direction stopped after 5 seconds. What is the average acceleration during 5 seconds?



1	4	m/s^2	to	the	west	2	2	m/s^2	to	the	west
3	4	m/s^2	to	the	east	4	2	m/s^2	to	the	east
5	2	m/s^2	to	the	south						

2. [5 points]

As shown in the figure below, a ball A moving at a speed of v = 10 m/s in the x-direction on a horizontal plane collides elastically with a ball B of the same mass that is at rest. After the collision, the speeds of A and B are v_1 and v_2 , respectively, and the directions of motion of A and B form an angle of 60° and 30° with the x-axis, respectively. Find the speeds v_1 and v_2 after the collision.

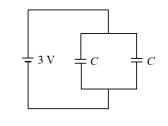


- (1) $5\sqrt{3}$ m/s, 5 m/s (2) 6 m/s, 8 m/s (3) 5 m/s, $5\sqrt{3}$ m/s (4) 8 m/s, 6 m/s (5) $2\sqrt{5}$ m/s, $4\sqrt{5}$ m/s
- 3. [3 points]

A certain amount of ideal gas changes from state A (volume $2 \times 10^{-3} \text{ m}^3$, pressure $5 \times 10^5 \text{ Pa}$, temperature 300 K) to state B (volume $1 \times 10^{-3} \text{ m}^3$, pressure $2 \times 10^5 \text{ Pa}$). What is the temperature of state B?

① 50 K	② 60 K	3 80 K
④ 100 K	⑤ 120 K	

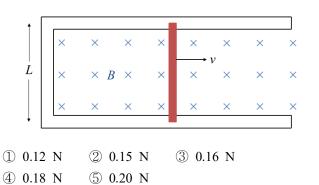
As shown in the figure below, two capacitors with capacitance C of 1.5×10^{-6} F are connected in parallel and connected to a 3 V power supply. What is the total charge stored in the capacitors?



3 μC
 5 μC
 6 μC
 8 μC
 9 μC

5. [4 points]

As shown in the figure below, a C-shaped conducting rail is placed vertically in a uniform magnetic field of B = 0.40 T and a rod with a length of L = 0.30 m is placed on top of it. The rod is forced to move at constant speed v = 5.0 m/s along horizontal rails. The rod and rails form a conducting loop. The rod has resistance 0.40Ω ; the rest of the loop has negligible resistance. What is the magnitude of the force that must be applied to the rod to make it move at constant speed?



6. ^[3 points]

There is a wave that oscillates 4 times per second. What is the speed of propagation of this wave if it travels 20 cm during one oscillation?

1 0.5 m/s	② 0.6 m/s	③ 0.8 m/s
④ 1.0 m/s	⑤ 1.2 m/s	

7. [3 points]

When an object is placed 10 cm in front of a convex mirror, a virtual image 0.5 times the size of the object is created. What is the focal length of this convex mirror?

① 10 cm	② 12 cm	③ 15 cm
④ 20 cm	⑤ 25 cm	

8. [3 points]

The temperature of the surface of the blackbody is doubled from T to 2T. How many times will be the intensity of the energy (I) emitted from the black body and the wavelength (λ_{max}) at which the intensity of the emitted energy is maximized, respectively?

- 1) 16 times, $\frac{1}{4}$ times 2) 16 times, $\frac{1}{2}$ times 3) 8 times, $\frac{1}{4}$ times 4) 8 times, $\frac{1}{2}$ times 5) 4 times, $\frac{1}{4}$ times
- 9. [3 points]

Choose the correct pairing of phenomena that only waves can exhibit.

- ① reflection, refraction ② reflection, interference
- 3 refraction, interference 4 refraction, diffraction
- \bigcirc interference, diffraction

2023 IUT Admission Test(SOCIE) Physics Examination(A TYPE) Answers

<Multiple choice Types> There is only one correct answer per each question. Mark your answer choice on the OMR answer sheet.

- For each correct answer, you will get the points indicated next to each question number.
- \odot No penalty point is applied to an incorrect answer.

Answers:

1. ①

2. ③

3. ②

4. (5)

5. ④

6. ③

7. ①

8. ②

9. (5)