IUT 1st Admission Test(SBL) Math Examination(TYPE A)

<Multiple choice Types > There is only one correct answer for each question. Mark your choice on the OMR answer sheet.
O The points for each question are listed next to the question number.
O You can use the right side of each page for your memo.

1. [3 points]

Find $(1+\sqrt{2})^{4}+(1-\sqrt{2})^{4}$.
(1) 30
(2) 32
(3) 34
(4) 36
(5) 38
2. [3 points]

When $a+b+c=1, a^{2}+b^{2}+c^{2}=5$ and $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3$, find $a b c$.
(1) $\frac{2}{3}$
(2) $\frac{4}{3}$
(3) 0
(4) $-\frac{2}{3}$
(5) $-\frac{4}{3}$
3. [3 points]

When α and β are the solutions of $x^{2}+5 x+2=0$, find $\alpha^{3}+\alpha \beta+\beta^{3}$.
(1) -91
(2) -93
(3) -95
(4) -97
(5) -99
4. [3 points]

When $t-\frac{1}{t}=2 \sqrt{3}$ and $t>0$, find $t^{3}+\frac{1}{t^{3}}$.
(1) 50
(2) 52
(3) 54
(4) 56
(5) 58
5. [3 points]

Find $\sum_{n=1}^{10} \frac{1}{n^{2}+4 n+3}$
(1) $\frac{31}{104}$
(2) $\frac{33}{104}$
(3) $\frac{35}{104}$
(4) $\frac{37}{104}$
(5) $\frac{39}{104}$
6. [3 points]

When $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ are solutions of

$$
\left\{\begin{array}{l}
x^{2}+y^{2}=2 \\
2 x+y=1
\end{array}\right.
$$

find $a_{1}+b_{1}+a_{2}+b_{2}$.
(1) $-\frac{4}{5}$
(2) $-\frac{2}{5}$
(3) 0
(4) $\frac{3}{5}$
(5) $\frac{6}{5}$
7. [3 points]

Simplify
$\log _{3}(\sqrt{2}+\sqrt{8}+\sqrt{9})+\log _{3}(\sqrt{2}+\sqrt{8}-\sqrt{9})$.
(1) 2
(2) 3
(3) $\sqrt{2}$
(4) $\sqrt{3}$
(5) $\sqrt{2}+\sqrt{3}$
8. [3 points]

Find the sum of all solutions of $4^{x}-5 \cdot 2^{x}+2=-8 \cdot 2^{-x}$.
(1) 1
(2) 3
(3) 5
(4) 7
(5) 9
9. [3 points]

Simplify $\left(3^{\log _{\sqrt{3}} 8}\right)-\left(\frac{1}{2}\right)^{\log _{4}\left(\frac{1}{81}\right)}$.
(1) 51
(2) 53
(3) 55
(4) 57
(5) 59
10. [3 points]

When $2^{x}=\frac{1}{\sqrt{3}}$ and $4^{y}=27$, find $\frac{y}{x}$.
(1) -1
(2) -3
(3) -5
(4) -7
(5) -9
11. [3 points]

When $a=\sqrt{3}+i$ and $b=\sqrt{3}-i$, find $\frac{a^{3}-b^{3}}{a b}$.
(1) $2 i$
(2) $4 i$
(3) $6 i$
(4) $8 i$
(5) $10 i$
12. ${ }^{[3}$ points]

Compute $\operatorname{tg} \frac{\pi}{8}$, where $\operatorname{tg} \theta=\frac{\sin \theta}{\cos \theta}$.
(1) $-1+\sqrt{2}$
(2) $-\frac{1}{2}+\sqrt{2}$
(3) $-\frac{1}{\sqrt{2}}+\sqrt{2}$
(4) $-\frac{1}{3}+\sqrt{2}$
(5) $-\frac{1}{\sqrt{3}}+\sqrt{2}$
13. [3 points]

Find the sum of all solutions of
$3 \cos 2 x+2 \cos x-1=0, \quad(0 \leq x \leq 2 \pi)$.
(1) π
(2) $\frac{3}{2} \pi$
(3) 2π
(4) $\frac{5}{2} \pi$
(5) 3π
14. [3 points]

Find the sum of all solutions of
$\sqrt{3} \sin x-\cos x=\sqrt{3},(0 \leq x \leq 2 \pi)$.
(1) $\frac{\pi}{2}$
(2) $\frac{2 \pi}{3}$
(3) $\frac{5 \pi}{6}$
(4) π
(5) $\frac{4 \pi}{3}$
15. [3 points]

When $A=\left(\begin{array}{ll}4 & 3 \\ 3 & 2\end{array}\right), B=\left(\begin{array}{rr}1 & 2 \\ -1 & 1\end{array}\right)$, and $A^{-1} B^{2}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, find $a+b+c+d$.
(1) -6
(2) -3
(3) 0
(4) 3
(5) 6
16. [3 points]

When $A=\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)$ and $A^{100}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, find $a+b+c+d$.
(1) 202
(2) 204
(3) 206
(4) 208
(5) 210
17. [3 points]

Find $\lim _{x \rightarrow 0} \frac{x^{3}+2 \sin x(1-\cos x)}{x(1-\cos x)}$.
(1) 2
(2) 4
(3) 6
(4) 8
(5) 10
18. [3 points]

Find $\lim _{x \rightarrow \infty}\left(\sqrt{x^{3}+3}-\sqrt{x^{3}+3 x \sqrt{x}+4}\right)$.
(1) $-\frac{1}{2}$
(2) -1
(3) $-\frac{3}{2}$
(4) -2
(5) $-\frac{5}{2}$
19. [3 points]

When $y=a x+b$ is the tangent line to $f(x)=\frac{\sqrt{x+4}}{2 x+1}$ at $x=0$, find $a+b$.
(1) $-\frac{1}{4}$
(2) $-\frac{3}{4}$
(3) $-\frac{5}{4}$
(4) $-\frac{7}{4}$
(5) $-\frac{9}{4}$
20. [3 points]

Let M and m be the maximum and minimum values of $f(x)=\frac{1}{3} x^{3}+x^{2}-3 x+1$,
$(-3 \leq x \leq 3)$, respectively. Find $M+m$.
(1) $\frac{20}{3}$
(2) $\frac{22}{3}$
(3) 8
(4) $\frac{26}{3}$
(5) $\frac{28}{3}$

21. [4 points]

Find the minimum value of $f(x)=3 \sin ^{2} x-4 \sin x \cos x+2$.
(1) -2
(2) -1
(3) 0
(4) 1
(5) 2
22. [4 points]

When $\omega=\frac{1-\sqrt{3} i}{2}$, find $\sum_{n=0}^{14} \omega^{n}$.
(1) 0
(2) 1
(3) $\sqrt{3} i$
(4) $1-\sqrt{3} i$
(5) $\frac{1-\sqrt{3} i}{2}$
23. [4 points]

When $f(x)=\sqrt[3]{(3 x+2)^{4}-8}$, find $f^{\prime}(0)$.
(1) 2
(2) 4
(3) 6
(4) 8
(5) 10
24. [4 points]

When a continuous function $f:[0, \infty) \rightarrow \mathbb{R}$ satisfies $\int_{0}^{x} f\left(t^{2}\right) d t=x \sqrt{2 x^{2}+1}$, find $f(4)$.
(1) $\frac{11}{3}$
(2) $\frac{13}{3}$
(3) $\frac{14}{3}$
(4) $\frac{16}{3}$
(5) $\frac{17}{3}$
25. [4 points]

Find the minimum value of $f(x)=x^{4}+2 x^{3}+4 x^{2}-6 x+2$.
(1) $\frac{1}{16}$
(2) $\frac{3}{16}$
(3) $\frac{5}{16}$
(4) $\frac{7}{16}$
(5) $\frac{9}{16}$
26. [4 points]

Find $\int_{1}^{4} \frac{x^{2}-2}{\sqrt{x}} d x$.
(1) $\frac{42}{5}$
(2) $\frac{44}{5}$
(3) $\frac{46}{5}$
(4) $\frac{48}{5}$
(5) 10
27. [4 points]

Find $\int_{0}^{1} \frac{1}{(2 x+1)^{3}} d x$.
(1) $\frac{2}{9}$
(2) $\frac{4}{9}$
(3) $\frac{2}{3}$
(4) $\frac{8}{9}$
(5) $\frac{10}{9}$
28. [4 points]

Find $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{k^{2}+2 k n-n^{2}}{n^{3}}$.
(1) 1
(2) $\frac{1}{2}$
(3) $\frac{1}{3}$
(4) $\frac{1}{4}$
(5) $\frac{1}{5}$
29. [4 points]

When $\int_{0}^{1} f(2 x) d x=3$ and $\int_{0}^{3} f(x) d x=18$, find $\int_{2}^{3} f(x) d x$.
(1) 12
(2) 14
(3) 16
(4) 18
(5) 20
30. [4 points]

Find the area of the region enclosed by $y=3 x^{3}+2 x^{2}+x+5$ and $y=3 x^{3}+x^{2}+4 x+3$.
(1) $\frac{1}{2}$
(2) $\frac{1}{3}$
(3) $\frac{1}{4}$
(4) $\frac{1}{5}$
(5) $\frac{1}{6}$

2023 IUT 1st SBL Answer Sheets

Type A

No.	1	2	3	4	5	6	7	8	9	10
Ans.	(3)	(4)	(2)	(2)	(3)	$(5$	(1)	(2)	(3)	(2)
No.	11	12	13	14	15	16	17	18	19	20
Ans.	(2)	(1)	(5)	(5)	(5)	(1)	(2)	(3)	(4)	(5)
No.	21	22	23	24	25	26	27	28	29	30
Ans.	(4)	(4)	(4)	(5)	(3)	(1)	(1)	(3)	(1)	(5)

2023 IUT Admission Test (SOCIE)
 Math Examination (A TYPE)

<Multiple choice Types> There is only one correct answer per each question. Mark your answer choice on the OMR answer sheet.

O For each correct answer, you will get the points indicated next to each question number.
O No penalty point is applied to an incorrect answer.

1. [2 points]

Simplify $\log _{2} 25 \times \log _{3} 16 \times \log _{125} 27$.
(1) 2
(2) 4
(3) 6
(4) 8
(5) 10
2. [2 points]

Evaluate $\sum_{n=2}^{10} \frac{1}{n^{2}-1}$.
(1) $\frac{6}{11}$
(2) $\frac{3}{5}$
(3) $\frac{36}{55}$
(4) $\frac{39}{55}$
(5) $\frac{42}{55}$
3. [2 points]

When α, β, γ are solutions of
$x^{3}-4 x^{2}-3 x+1=0$, find $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$.
(1) 1
(2) 2
(3) 3
(4) 4
(5) 5
4. [2 points]

When three points $(1,2),(2,5),(0, a)$ are on a line, find the constant a.
(1) -2
(2) -1
(3) 0
(4) 1
(5) 2
5. [2 points]

When $\omega=\frac{-1+\sqrt{3} i}{2}$, evaluate $\sum_{n=1}^{20} \omega^{n}$.
(1) -1
(2) $-i$
(3) 0
(4) 1
(5) i
6. [2 points]

When $e^{2 x}=5$, find $\frac{e^{3 x}-e^{-3 x}}{e^{x}-e^{-x}}$.
(1) $\frac{23}{5}$
(2) 5
(3) $\frac{27}{5}$
(4) $\frac{29}{5}$
(5) $\frac{31}{5}$
7. [3 points]

When $3 \cos 2 \theta+3=16 \sin \theta$, find $\sin \theta$.
(1) $\frac{1}{6}$
(2) $\frac{1}{3}$
(3) $\frac{1}{2}$
(4) $\frac{2}{3}$
(5) $\frac{5}{6}$
8. [3 points]

Find the sum of all integer solutions of $x^{4}-5 x^{3}-x^{2}+5 x<0$.
(1) 1
(2) 3
(3) 5
(4) 7
(5) 9
9. [3 points]

When a sequence $\left\{a_{n}\right\}_{\mathrm{n}=1}^{\infty}$ satisfies

$$
\sum_{k=1}^{n} k a_{k}=n^{2}+3 n
$$

find a_{10}
(1) 2
(2) $\frac{11}{5}$
(3) $\frac{12}{5}$
(4) $\frac{13}{5}$
(5) $\frac{14}{5}$
10. [3 points]

When $A=\left(\begin{array}{cc}1 & 2 \\ -1 & 2\end{array}\right), B=\left(\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right)$, find the sum of all entries of $A^{-1} B$.
(1) -3
(2) $-\frac{3}{2}$
(3) 0
(4) $\frac{3}{2}$
(5) 3
11. [3 points]

When α, β are solutions of $\left(e^{x}-2\right)\left(e^{x}-4\right)=1$, find $\alpha+\beta$.
(1) 0
(2) $\ln 3$
(3) $\ln 5$
(4) $\ln 7$
(5) $\ln 9$
12. [3 points]

Compute $\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2}{x^{2}}$.
(1) 1
(2) $\frac{3}{2}$
(3) 2
(4) $\frac{5}{2}$
(5) 3
13. [4 points]

When $f(x)=x^{3}+3 x^{2}-6 x+1$ and $g(x)=f(\sin \pi x+x)$, find $g^{\prime}(1)$.
(1) $-3 \pi-3$
(2) $-3 \pi+3$
(3) 0
(4) $3 \pi-3$
(5) $3 \pi+3$
14. [4 points]

When θ is the angle between the z-axis and the plane $x+2 y+3 z=2$, find $\cos \theta$.
(1) $\frac{\sqrt{50}}{14}$
(2) $\frac{\sqrt{15}}{7}$
(3) $\frac{\sqrt{70}}{14}$
(4) $\frac{\sqrt{20}}{7}$
(5) $\frac{\sqrt{90}}{14}$
15. [4 points]

Evaluate $\int_{0}^{1} \frac{x}{\left(x^{2}+1\right)^{2}} d x$.
(1) $\frac{1}{8}$
(2) $\frac{1}{4}$
(3) $\frac{3}{8}$
(4) $\frac{1}{2}$
(5) $\frac{5}{8}$
16. [4 points]

Evaluate $\int_{0}^{\pi} x \sin x d x$.
(1) π
(2) $\frac{3}{2} \pi$
(3) 2π
(4) $\frac{5}{2} \pi$
(5) 3π
17. [4 points]

When $\int_{0}^{1} f(x) d x=2$ and $\int_{0}^{3} f(x) d x=5$, find $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(1+\frac{2 k}{n}\right)$.
(1) $\frac{3}{2}$
(2) 2
(3) $\frac{5}{2}$
(4) 3
(5) $\frac{7}{2}$
18. [5 points]

Find the distance between the line $y=x+2$ and the curve $y=x-x^{2}$.
(1) $\frac{\sqrt{2}}{4}$
(2) $\frac{\sqrt{2}}{2}$
(3) $\frac{3 \sqrt{2}}{4}$
(4) $\sqrt{2}$
(5) $\frac{5 \sqrt{2}}{4}$
19. [5 points]

Find the area of the triangle with three vertices $(1,2,3),(1,1,1),(2,2,1)$.
(1) $\frac{1}{2}$
(2) 1
(3) $\frac{3}{2}$
(4) 2
(5) $\frac{5}{2}$
20. [5 points]

Find the area between two curves:

$$
y=x^{3}+2 x, y=x^{2}+3 x-1
$$

(1) $\frac{1}{3}$
(2) $\frac{2}{3}$
(3) 1
(4) $\frac{4}{3}$
(5) $\frac{5}{3}$
21. [5 points]

When $f(x)=e^{x}+x$ and g is the inverse function of f, find $\int_{1}^{e+1} g(x) d x$.
(1) $\frac{1}{2}$
(2) $\frac{3}{4}$
(3) 1
(4) $\frac{5}{4}$
(5) $\frac{3}{2}$

2023 IUT Admission Test(SOCIE) Answers \& solutions

-Type A

1	2	3	4	5	6	7
(4)	(3)	(3)	(2)	(1)	(5)	(2)
8	9	10	11	12	13	14
(5)	(2)	(5)	(4)	(1)	(2)	(3)
15	16	17	18	19	20	21
(2)	(1)	(1)	(4)	(3)	(4)	(5)

-Type B

1	2	3	4	5	6	7
(3)	(4)	(3)	(5)	(2)	(1)	(2)
8	9	10	11	12	13	14
(2)	(5)	(1)	(5)	(4)	(2)	(2)
15	16	17	18	19	20	21
(3)	(1)	(1)	(4)	(4)	(3)	(5)

-Type C

1	2	3	4	5	6	7
(1)	(5)	(4)	(3)	(3)	(2)	(4)
8	9	10	11	12	13	14
(1)	(2)	(5)	(2)	(5)	(1)	(1)
15	16	17	18	19	20	21
(2)	(3)	(2)	(4)	(5)	(4)	(3)

-Type D

1	2	3	4	5	6	7
(3)	(4)	(2)	(3)	(5)	(1)	(5)
8	9	10	11	12	13	14
(2)	(5)	(2)	(1)	(4)	(3)	(2)
15	16	17	18	19	20	21
(1)	(2)	(1)	(3)	(4)	(5)	(4)

Solutions of SOCIE, type A

1. $\log _{2} 25 \times \log _{3} 16 \times \log _{125} 27=\frac{2 \log 5}{\log 2} \times \frac{4 \log 2}{\log 3} \times \frac{3 \log 3}{3 \log 5}=8$.
2. $\sum_{n=2}^{10} \frac{1}{n^{2}-1}=\frac{1}{2} \sum_{n=2}^{10}\left(\frac{1}{n-1}-\frac{1}{n+1}\right)=\frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{10}-\frac{1}{11}\right)=\frac{36}{55}$.
3. $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{\alpha \beta+\beta \gamma+\gamma \alpha}{\alpha \beta \gamma}=3$.
4. Since $\frac{5-2}{2-1}=\frac{a-2}{0-1}$, we have $a=-1$.
5. Since $1+\omega+\omega^{2}=0$, we have $\sum_{n=1}^{20} \omega^{n}=\omega+\omega^{2}=-1$.
6. $\frac{e^{3 x}-e^{-3 x}}{e^{x}-e^{-x}}=\frac{e^{6 x}-1}{e^{2 x}\left(e^{2 x}-1\right)}=\frac{5^{3}-1}{5 \times 4}=\frac{31}{5}$.
7. Since $3\left(1-2 \sin ^{2} \theta\right)+3=16 \sin \theta$, we get $(3 \sin \theta-1)(\sin \theta+3)=0$, hence $\sin \theta=\frac{1}{3}$.
8. Since $x^{4}-5 x^{3}-x^{2}+5 x=x(x-1)(x+1)(x-5)<0$, we get $-1<x<0,1<x<5$, hence the sum of integer solutions is 9 .
9. Since $10 a_{10}=10^{2}+3 \times 10-\left(9^{2}+3 \times 9\right)=22$, we have $a_{10}=\frac{11}{5}$.
10. $A^{-1} B=\frac{1}{4}\left(\begin{array}{cc}2 & -2 \\ 1 & 1\end{array}\right)\left(\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right)=\left(\begin{array}{cc}-1 & 1 \\ \frac{3}{2} & \frac{3}{2}\end{array}\right)$.

Therefore the sum of all the elements of $A^{-1} B$ is 3 .
11. Since $\left(e^{x}-2\right)\left(e^{x}-4\right)-1=\left(e^{x}-e^{\alpha}\right)\left(e^{x}-e^{\beta}\right)$, we get $e^{\alpha+\beta}=7$ so that $\alpha+\beta=\ln 7$.
12. By L'hospital theorem, we get $\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2}{x^{2}}=\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{2 x}=\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}}{2}=1$.
13. Since $g^{\prime}(x)=f^{\prime}(\sin \pi x+x) \times(\pi \cos \pi x+1)$, we get $g^{\prime}(1)=f^{\prime}(1) \times(-\pi+1)=-3 \pi+3$.
14. Since $\sin \theta=\frac{(1,2,3) \cdot(0,0,1)}{|(1,2,3)| \times|(0,0,1)|}=\frac{3}{\sqrt{14}}$, we get $\cos \theta=\sqrt{1-\left(\frac{3}{\sqrt{14}}\right)^{2}}=\frac{\sqrt{70}}{14}$.
15. $\int_{0}^{1} \frac{x}{\left(x^{2}+1\right)^{2}} d x=\left[-\frac{1}{2\left(x^{2}+1\right)}\right]_{0}^{1}=\frac{1}{4}$.
16. By integration by parts, we get

$$
\int_{0}^{\pi} x \sin x d x=-\left.x \cos x\right|_{0} ^{\pi}+\int_{0}^{\pi} \cos x d x=\pi
$$

17. $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(1+\frac{2 k}{n}\right)=\frac{1}{2} \int_{1}^{3} f(x) d x=\frac{5-2}{2}=\frac{3}{2}$.
18. Since $y=x$ is tangent to $y=x-x^{2}$, the distance between $y=x-x^{2}$ and $y=x+2$ is equal to the distance between $y=x$ and $y=x+2$. Therefore the distance is $\sqrt{2}$.
19. Let $a=(1,2,3)-(1,1,1)=(0,1,2), \quad b=(2,2,1)-(1,1,1)=(1,1,0)$. Then the area of the triangle is
$\frac{1}{2} \sqrt{|a|^{2}|b|^{2}-(a \cdot b)^{2}}=\frac{1}{2} \sqrt{5 \times 2-1}=\frac{3}{2}$.
20. Since $x^{3}+2 x-\left(x^{2}+3 x-1\right)=(x+1)(x-1)^{2}$, the area between two curves $y=x^{3}+2 x$, $y=x^{2}+3 x-1$ is
$\int_{-1}^{1}(x+1)(x-1)^{2} d x=2 \int_{0}^{1}\left(-x^{2}+1\right) d x=\frac{4}{3}$.
21. Let $t=g(x)$. Then $\int_{1}^{e+1} g(x) d x=\int_{0}^{1} t f^{\prime}(t) d t=\left.t f(t)\right|_{0} ^{1}-\int_{0}^{1} f(t) d t=e+1-\left(e-\frac{1}{2}\right)=\frac{3}{2}$.

2023 IUT Admission Test(SOCIE) Physics Examination(A TYPE)

<Multiple choice Types> There is only one correct answer
per each question. Mark your answer choice on the OMR
answer sheet. answer sheet.

For each correct answer, you will get the points indicated next to each question number.

O No penalty point is applied to an incorrect answer.

1. [3 points]

As shown in the figure below, a car running at a speed of $20 \mathrm{~m} / \mathrm{s}$ in the east direction stopped after 5 seconds. What is the average acceleration during 5 seconds?

(1) $4 \mathrm{~m} / \mathrm{s}^{2}$ to the west
(2) $2 \mathrm{~m} / \mathrm{s}^{2}$ to the west
(3) $4 \mathrm{~m} / \mathrm{s}^{2}$ to the east
(4) $2 \mathrm{~m} / \mathrm{s}^{2}$ to the east
(5) $2 \mathrm{~m} / \mathrm{s}^{2}$ to the south
2. [5 points]

As shown in the figure below, a ball A moving at a speed of $v=10 \mathrm{~m} / \mathrm{s}$ in the x-direction on a horizontal plane collides elastically with a ball B of the same mass that is at rest. After the collision, the speeds of A and B are v_{1} and v_{2}, respectively, and the directions of motion of A and B form an angle of 60° and 30° with the x-axis, respectively. Find the speeds v_{1} and v_{2} after the collision.

(1) $5 \sqrt{3} \mathrm{~m} / \mathrm{s}, 5 \mathrm{~m} / \mathrm{s}$
(2) $6 \mathrm{~m} / \mathrm{s}, 8 \mathrm{~m} / \mathrm{s}$
(3) $5 \mathrm{~m} / \mathrm{s}, 5 \sqrt{3} \mathrm{~m} / \mathrm{s}$
(4) $8 \mathrm{~m} / \mathrm{s}, 6 \mathrm{~m} / \mathrm{s}$
(5) $2 \sqrt{5} \mathrm{~m} / \mathrm{s}, 4 \sqrt{5} \mathrm{~m} / \mathrm{s}$
3. [3 points]

A certain amount of ideal gas changes from state A (volume $2 \times 10^{-3} \mathrm{~m}^{3}$, pressure $5 \times 10^{5} \mathrm{~Pa}$, temperature 300 K) to state B (volume $1 \times 10^{-3} \mathrm{~m}^{3}$, pressure $2 \times 10^{5} \mathrm{~Pa}$). What is the temperature of state B ?
(1) 50 K
(2) 60 K
(3) 80 K
(4) 100 K
(5) 120 K
4. [3 points]

As shown in the figure below, two capacitors with capacitance C of $1.5 \times 10^{-6} \mathrm{~F}$ are connected in parallel and connected to a 3 V power supply. What is the total charge stored in the capacitors?

(1) $3 \mu \mathrm{C}$
(2) $5 \mu \mathrm{C}$
(3) $6 \mu \mathrm{C}$
(4) $8 \mu \mathrm{C}$
(5) $9 \mu \mathrm{C}$
5. [4 points]

As shown in the figure below, a C-shaped conducting rail is placed vertically in a uniform magnetic field of $B=0.40 \mathrm{~T}$ and a rod with a length of $L=0.30 \mathrm{~m}$ is placed on top of it. The rod is forced to move at constant speed $v=5.0 \mathrm{~m} / \mathrm{s}$ along horizontal rails. The rod and rails form a conducting loop. The rod has resistance 0.40Ω; the rest of the loop has negligible resistance. What is the magnitude of the force that must be applied to the rod to make it move at constant speed?

(1) 0.12 N
(2) 0.15 N
(3) 0.16 N
(4) 0.18 N
(5) 0.20 N
6. [3 points]

There is a wave that oscillates 4 times per second. What is the speed of propagation of this wave if it travels 20 cm during one oscillation?
(1) $0.5 \mathrm{~m} / \mathrm{s}$
(2) $0.6 \mathrm{~m} / \mathrm{s}$
(3) $0.8 \mathrm{~m} / \mathrm{s}$
(4) $1.0 \mathrm{~m} / \mathrm{s}$
(5) $1.2 \mathrm{~m} / \mathrm{s}$
7. [3 points]

When an object is placed 10 cm in front of a convex mirror, a virtual image 0.5 times the size of the object is created. What is the focal length of this convex mirror?
(1) 10 cm
(2) 12 cm
(3) 15 cm
(4) 20 cm
(5) 25 cm
8. [3 points]

The temperature of the surface of the blackbody is doubled from T to $2 T$. How many times will be the intensity of the energy (I) emitted from the black body and the wavelength $\left(\lambda_{\max }\right)$ at which the intensity of the emitted energy is maximized, respectively?
(1) 16 times, $\frac{1}{4}$ times
(2) 16 times, $\frac{1}{2}$ times
(3) 8 times, $\frac{1}{4}$ times
(4) 8 times, $\frac{1}{2}$ times
(5) 4 times, $\frac{1}{4}$ times
9. [3 points]

Choose the correct pairing of phenomena that only waves can exhibit.
(1) reflection, refraction
(2) reflection, interference
(3) refraction, interference
(4) refraction, diffraction
(5) interference, diffraction

2023 IUT Admission Test(SOCIE)
 Physics Examination(A TYPE) Answers

[^0]Answers:

1. (1)
2. (3)
3. (2)
4. (5)
5. (4)
6. (3)
7. (1)
8. (2)
9. (5)

[^0]: <Multiple choice Types> There is only one correct answer per each question. Mark your answer choice on the OMR answer sheet.

 O For each correct answer, you will get the points indicated next to each question number.

 O No penalty point is applied to an incorrect answer.

